Cohomology and finite subgroups of profinite groups
HTML articles powered by AMS MathViewer
- by Pham Anh Minh and Peter Symonds
- Proc. Amer. Math. Soc. 132 (2004), 1581-1588
- DOI: https://doi.org/10.1090/S0002-9939-03-07250-2
- Published electronically: November 4, 2003
- PDF | Request permission
Abstract:
We prove two theorems linking the cohomology of a pro-$p$ group $G$ with the conjugacy classes of its finite subgroups. The number of conjugacy classes of elementary abelian $p$-subgroups of $G$ is finite if and only if the ring $H^{*}(G,\mathbb {Z}/p)$ is finitely generated modulo nilpotent elements. If the ring $H^{*}(G,\mathbb {Z} /p)$ is finitely generated, then the number of conjugacy classes of finite subgroups of $G$ is finite.References
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$-groups, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1991. MR 1152800
- William G. Dwyer and Clarence W. Wilkerson, Smith theory and the functor $T$, Comment. Math. Helv. 66 (1991), no. 1, 1–17. MR 1090162, DOI 10.1007/BF02566633
- Leonard Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144017
- Hans-Werner Henn, Centralizers of elementary abelian $p$-subgroups and mod-$p$ cohomology of profinite groups, Duke Math. J. 91 (1998), no. 3, 561–585. MR 1604171, DOI 10.1215/S0012-7094-98-09121-9
- Hans-Werner Henn, Jean Lannes, and Lionel Schwartz, The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, Amer. J. Math. 115 (1993), no. 5, 1053–1106. MR 1246184, DOI 10.2307/2375065
- T. Radó and P. Reichelderfer, On a stretching process for surfaces, Amer. J. Math. 61 (1939), 645–650. MR 47, DOI 10.2307/2371318
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Claus Scheiderer, Farrell cohomology and Brown theorems for profinite groups, Manuscripta Math. 91 (1996), no. 2, 247–281. MR 1411658, DOI 10.1007/BF02567954
Bibliographic Information
- Pham Anh Minh
- Affiliation: Department of Mathematics, College of Science, University of Hue, Dai hoc Khoa hoc, Hue, Vietnam
- Address at time of publication: Inst. Hautes Études Sci., Le Bois-Marie, 35 Route de Chartres, F-91440 Bures-sur-Yvette, France
- Email: paminh@dng.vnn.vn
- Peter Symonds
- Affiliation: Department of Mathematics, U.M.I.S.T., P.O. Box 88, Manchester M60 1QD, England
- Email: Peter.Symonds@umist.ac.uk
- Received by editor(s): November 1, 2002
- Received by editor(s) in revised form: February 9, 2003
- Published electronically: November 4, 2003
- Communicated by: Stephen D. Smith
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1581-1588
- MSC (2000): Primary 20J06, 17B50
- DOI: https://doi.org/10.1090/S0002-9939-03-07250-2
- MathSciNet review: 2051117