A characterization of discrete groups
HTML articles powered by AMS MathViewer
- by Giovanni Ranieri
- Proc. Amer. Math. Soc. 132 (2004), 1845-1848
- DOI: https://doi.org/10.1090/S0002-9939-03-07359-3
- Published electronically: December 23, 2003
- PDF | Request permission
Abstract:
The purpose of this article is to prove the following result. Let $G$ be a locally compact group, $\mathcal {A}(G)$ the Fourier algebra of $G,$ and $\mathcal {S} (G)=\{ u\in \mathcal {A}(G) :~\exists ~c>~0$ such that $\parallel uv\parallel _{\mathcal {A}(G)}\leq ~c\parallel v\parallel _{\infty }\hspace {0.2 cm}\forall ~ v\in \mathcal {A}(G)\}$. Then $G$ is a discrete group $\Longleftrightarrow \mathcal {S} (G)~\neq \{0\}$.References
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- O. Gebuhrer and R. Szwarç, Alternating signs in orthogonal expansions, in preparation.
- Sigurđur Helgason, Topologies of group algebras and a theorem of Littlewood, Trans. Amer. Math. Soc. 86 (1957), 269–283. MR 95428, DOI 10.1090/S0002-9947-1957-0095428-5
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Shôichirô Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659–664. MR 163185
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
Bibliographic Information
- Giovanni Ranieri
- Affiliation: Institut de Recherche Mathématique Avancée, 7 rue René Descartes, 67000 Strasbourg, France
- Email: GiovanniRanieri@aol.com
- Received by editor(s): October 9, 2002
- Received by editor(s) in revised form: February 11, 2003
- Published electronically: December 23, 2003
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1845-1848
- MSC (2000): Primary 22D15
- DOI: https://doi.org/10.1090/S0002-9939-03-07359-3
- MathSciNet review: 2051149