A characterization of the Lagrangian pseudosphere
HTML articles powered by AMS MathViewer
- by Ildefonso Castro and Francisco Urbano
- Proc. Amer. Math. Soc. 132 (2004), 1797-1804
- DOI: https://doi.org/10.1090/S0002-9939-03-07377-5
- Published electronically: December 31, 2003
- PDF | Request permission
Abstract:
We characterize the Lagrangian pseudosphere as the only branched Lagrangian immersion of a sphere in complex Euclidean plane with constant length mean curvature vector.References
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- R. D. Gulliver II, R. Osserman, and H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math. 95 (1973), 750–812. MR 362153, DOI 10.2307/2373697
Bibliographic Information
- Ildefonso Castro
- Affiliation: Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de Jaén, 23071 Jaén, Spain
- Email: icastro@ujaen.es
- Francisco Urbano
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain
- Email: furbano@ugr.es
- Received by editor(s): February 11, 2003
- Published electronically: December 31, 2003
- Additional Notes: Research partially supported by an MCYT and FEDER grant BFM2001-2967
- Communicated by: Jon G. Wolfson
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1797-1804
- MSC (2000): Primary 53C42, 53B25; Secondary 53A05, 53D12
- DOI: https://doi.org/10.1090/S0002-9939-03-07377-5
- MathSciNet review: 2051144
Dedicated: Dedicated to B. Y. Chen on his 60th birthday