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ON THE EXISTENCE AND MULTIPLICITY
OF POSITIVE SOLUTIONS

FOR SOME INDEFINITE NONLINEAR
EIGENVALUE PROBLEM
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(Communicated by David S. Tartakoff)

Abstract. This paper is concerned with the existence, uniqueness and/or
multiplicity, and stability of positive solutions of an indefinite weight ellip-
tic problem with concave or convex nonlinearity. We use mainly bifurcation
methods to obtain our results.

1. Introduction and main result

In this work we analyze the positive solutions of the weight elliptic problem

(1.1)
{
Lu = λm(x)f(u) in Ω,
u = 0 on ∂Ω,

where Ω is a bounded domain of RN with regular boundary ∂Ω; m ∈ C(Ω) changes
sign, f : R+ 7→ R satisfies some assumptions that will be detailed below, λ ∈ R will
be regarded as a bifurcation parameter, and L is a second-order uniformly elliptic
operator of the form

(1.2) Lu := −
N∑

i,j=1

Di(aij(x)Dju) +
N∑
i=1

bi(x)Diu,

with aij = aji ∈ C1(Ω) and bi ∈ C1(Ω).
When m ≡ 1, (1.1) was treated in [2] and [9], showing that there exists at most

one positive solution if f is concave, but it may have multiple positive solutions
when f is convex.

When m changes sign the study of (1.1) is more difficult. In order to state the
results we need to introduce some notation. First, we can suppose without loss of
generality that λ > 0 (similar results are obtained if λ < 0) and f ′(0) = 1 (see
Remark 1.2 where we show how to overcome this restriction). Since the principal
eigenvalue of L is positive (observe that positive constants are supersolutions of
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L, see [15]), it is well known (cf. [13]) that the linear eigenvalue problem with
indefinite weight function

(1.3)
{
Lu = λm(x)u in Ω,
u = 0 on ∂Ω

admits two principal eigenvalues (i.e., an eigenvalue having a positive eigenfunction)
such that λ− < 0 < λ+.

When L = −∆, f(0) = 0, f is concave, nonnegative and f(1) = 0, Brown and
Hess [6] proved that (1.1) possesses exactly one positive solution (λ, u) such that
‖u‖∞ ≤ 1 if λ > λ+, and it has no positive solution if λ ∈ [0, λ+].

Recently, Brown and Ko [14] studied (1.1) when f(u) = f1(u) = u−up (concave)
and f(u) = f2(u) = u + up (convex), p > 1 (in fact, they consider a more general
boundary condition). They showed that from the trivial solution u = 0 bifurcates an
unbounded in R×C(Ω) continuum (maximal closed and connected set) C of positive
solutions at λ = λ+. In the case f = f1, the solutions u ∈ C satisfy ‖u‖∞ < 1,
and the projection of C onto R is (λ+,+∞). Moreover, for λ ∈ (λ−, λ+) \ {0} and
p < (N +2)/(N−2) they proved the existence of a positive solution (different from
the ones arising from bifurcation) by using variational methods.

In the convex case, f = f2, C goes to the left. Assuming p < (N+2)/(N−1) and
some restrictions on m in order to obtain a priori bounds for λ 6= 0, C approaches
infinity as λ → 0+. They also proved that there is no positive solution in the
particular case λ = λ+, but did not provide information for λ > λ+.

We generalize and improve these results in different ways. We consider a not
necessarily selfadjoint operator and more general reaction function. In the case
of concave f , we prove that the solutions obtained by variational methods in [14]
constitute in fact a branch bifurcating from infinity at λ = 0 whose projection on
the λ axis is (0,+∞), and we deduce the existence of a second positive solution for
λ ∈ (λ+,+∞). On the other hand, when f is convex, we show the existence of a
positive solution if λ ∈ (0, λ+), and in the particular case f = f2 we prove that
there is no positive solution for λ ≥ λ+.

Specifically, we show the following result. Assume that

Ω± := {x ∈ Ω : m± > 0}

are open and regular sets, where m± represent the positive and negative part of m
respectively; and suppose that m±(x) ≈ [dist(x, ∂Ω±)]γ± for x close to ∂Ω± and
some γ± ≥ 0. Throughout this paper we are going to work with a smooth function
f : R+ 7→ R, f(0) = 0, f ′(0) = 1 and satisfying

(f1) f ′′ < 0, lim
s→+∞

f(s)
sp

= α < 0,

or

(f2) f ′′ > 0, lim
s→+∞

f(s)
sp

= β > 0,

for some p such that

(1.4) 1 < p < min
{
N + 1 + γ±
N − 1

,
N + 2
N − 2

}
.

Our main result is the following.
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Figure 1. Bifurcation diagram for (1.1)

Theorem 1.1. Suppose (1.4) holds.
a) Assume that f satisfies (f1). Then (1.1) has a positive solution if and only

if λ 6= 0. Moreover, for λ ∈ (−∞, λ−) ∪ (λ+,+∞) there exist at least two
positive solutions, one of them linearly asymptotically stable.

b) Assume that f satisfies (f2). Then (1.1) has a positive solution if λ ∈
(λ−, 0) ∪ (0, λ+).

Furthermore, in any case for each sequence (λn, un)n∈N of positive solutions of (1.1)
such that λn → 0, then ‖un‖∞ →∞ as n→∞.

See Figure 1, where we have summarized the information of this result.

Remark 1.2. As we said before, we can assume that f ′(0) = 1. Indeed, if f satisfies
(f1) and f ′(0) < 0, then (1.1) is equivalent to Lu = λm1(x)h(u) with m1 = −m
and h(u) = −f(u), and so it satisfies (f2). So, Theorem 1.1 b) applies in this case.
On the other hand, if f satisfies (f2) and f ′(0) < 0, then (1.1) is equivalent to
Lu = λm2(x)j(u) with m2 = −m and j(u) = −f(u). In this case, we can apply
Theorem 1.1 a).

In order to prove the above result, we include (1.1) in the more general equation

(1.5)
{
Lu = µm(x)u + λm(x)g(u) in Ω,
u = 0 on ∂Ω,

with λ fixed, g(u) = f(u) − u, adding µ ∈ R as parameter and look for solutions
to (1.5) for µ = λ. This equation is interesting in itself, and it has attracted a
great deal of attention recently (see, for example, [1], [3], [4], [5], [12] and [16])
when m ≡ 1 in the first term on the right-hand side of (1.5) and in [8] with the
right-hand side of the form µh(x)u + g(x)up and restrictive conditions on h and g
that are not satisfied in our case. We give complete information on the bifurcation
diagrams of (1.5), and deduce Theorem 1.1 from them.

An outline of the work is as follows. In Section 2 we study (1.5) when f satisfies
(f1) or (f2) and prove the main result of this paper. In the last section we study
the particular case f(u) = u+ up.
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2. Study of the equation (1.5)

In this section we study the equation (1.5), giving a description of its bifurcation
diagrams. We define Π : R×C(Ω) 7→ R, the projection map onto R, i.e., Π(µ, u) =
µ.

Proposition 2.1. Assume (1.4), and fix λ > 0.
a) If f satisfies (f1), then (1.5) possesses a positive solution if µ > λ−. More-

over, from the trivial solution u = 0 emanate two unbounded in R × C(Ω)
continua of positive solutions C+ := {(µ, uµ)} and C− := {(µ,wµ)} at
µ = λ+ and µ = λ−, respectively. Both continua bifurcate to the right,
and Π(C−) ⊃ (λ−,+∞), Π(C+) = (λ+,+∞). Finally, for µ > λ+, uµ is
linearly asymptotically stable and uµ 6= wµ.

b) If f satisfies (f2), then (1.5) possesses a positive solution if µ < λ+. More-
over, from the trivial solution u = 0 emanate two unbounded in R × C(Ω)
continua of positive solutions C+ := {(µ,wµ)} and C− := {(µ, uµ)} at
µ = λ+ and µ = λ−, respectively. Both continua bifurcate to the left,
and Π(C−) = (−∞, λ−), Π(C+) ⊃ (−∞, λ+). Finally, for µ < λ−, uµ is
linearly asymptotically stable and uµ 6= wµ.

Proof. First, we prove part a). We begin by showing that if (µ, u) is a positive
solution of (1.5), then there exists µ0 < 0 (in fact, µ0 < λ−) such that

(2.1) µ > µ0.

Since (µ, u) is a positive solution of (1.5), then λΩ
1 (L − µm − λm g(u)

u ) = 0, where
λD1 (L + q) stands for the principal eigenvalue of L + q in a domain D ⊂ RN with
q ∈ L∞(D) subject to homogeneous Dirichlet boundary conditions, and recall that
g(u) = f(u) − u. Using the concavity of f and the monotony properties of the
principal eigenvalues with respect to the domain and the potential q, it follows that

0 = λΩ
1 (L − µm− λmg(u)

u
) < λ

Ω−
1 (L − µm),

and so (2.1) holds (see for instance Remark 6.3 in [15]).
Now, from the Crandall and Rabinowitz Theorem (cf. [10]) there exist ε > 0 and

two differentiable curves of positive solutions of the form (µ±(s), u±(s)) such that
µ±(s) = λ± + µ1

±(s) and u±(s) = s(ϕ±1 + v±(s)) for s ∈ (−ε, ε) with v±(0) = 0,
µ1
±(0) = 0 and where ϕ±1 are the positive eigenfunctions of (1.3) associated to
λ±. Substituting these expressions in (1.5) and using that Lϕ±1 = λ±m(x)ϕ±1 , we
deduce that

(L − λ±m)v±(s) = µ1
±(s)m(x)(ϕ±1 + v±(s)) + λm(x)(

f(u±(s))
s

− ϕ±1 − v±(s)),

or equivalently,

(2.2)
1
±λ±

v±− T±v± =
1
λ±

T±(µ1
±(s)(ϕ±1 + v±(s)) + λ(

f(u±(s))
s

−ϕ±1 − v±(s))),

where T± : E := C0(Ω) 7→ E; T± := (L)−1M± and M± : E 7→ E denotes the
multiplication operator induced by the function ±m. Considering E ordered by its
positive cone PE , it is easy to see that ϕ±1 are the positive eigenfunctions of T± and
that the spectral radius r(T±) = r(T ∗±) = 1

±λ± , where T ∗± stands for the adjoint of
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T± in the sense of L2. Denote by Φ∗± ∈ PE∗ the positive eigenfunctions of T ∗±; then
the Fredholm alternative applied to (2.2) lets us conclude that

(2.3) lim
s→0

µ1
±(s)
s

= −λf
′′(0)
2

∫
Ω

(ϕ±1 )2Φ∗±∫
Ω

ϕ±1 Φ∗±
,

and so

(2.4) sign(lim
s→0

µ1
±(s)
s

) 6= sign(f ′′(0)).

Therefore, the bifurcation directions are both supercritical when f is concave.
We now analyze the global behavior of these curves bifurcating from (λ±, 0).

By the Rabinowitz global bifurcation theorem (cf. [17]) there exist two continua
C+ := {(µ, uµ)} and C− := {(µ,wµ)} of solutions bifurcating from (λ+, 0) and
(λ−, 0), respectively. First, we study C+. By (f1), there exists sµ > 0 such that
(µ−λ)sµ+λf(sµ) = 0, and for s < sµ we have that λf(s)+(µ−λ)s > 0. Consider
the family u(µ) := sµ of supersolutions of (1.5). Observe that u is not a solution
and that for µ > λ+ and close to it, uµ < u(µ). Consequently, we can apply
Theorem 2.2 in [11] to conclude that

(2.5) uµ < sµ

for all µ ≥ λ+. We are going to prove that uµ is asymptotically stable, i.e., that

(2.6) λΩ
1 (L − µm− λmg′(uµ)) > 0.

Indeed, taking ψ := λf(uµ) + (µ− λ)uµ, we have that ψ > 0 by (2.5) and that

(L − µm− λmg′(uµ))ψ = −λf ′′(uµ)
N∑

i,j=1

aijDi(uµ)Dj(uµ) > 0,

whence we obtain that ψ is a strict supersolution of L−µm−λmg′(uµ), and hence
(2.6).

It is clear now that C+ is unbounded and that Π(C+) = (λ+,∞). Indeed, at
µ = λ+ the direction is supercritical. By (2.6) this continuum can be prolonged
indefinitely to the right (i.e., C+ cannot bend back). Finally, by (2.5), if (µ, uµ) ∈
C+, then uµ is bounded, and the above claim follows.

We now analyze C−. By (2.3) and (2.4), C− goes to the right at µ = λ−. By the
Crandall and Rabinowitz theorem, C− does not reach (λ+, 0), because in a neigh-
borhood of (λ+, 0), C− entirely consists of (µ+(s), u+(s)), s > 0. On the other hand,
by (2.6) it follows that in each neighborhood of (µ0, uµ0) in R×C(Ω) with µ0 > λ+

the unique positive solutions of (1.5) are of the form (µ, uµ) (see Proposition 20.6
in [2]), and so C− cannot finish in C+.

Finally, by (1.4) it follows from Theorem 4.3 in [3] that for µ in a compact
interval of R the solutions (µ, u) of (1.5) are bounded in R × C(Ω). So, Π(C−) is
unbounded. This concludes the proof of part a).

Since the proof of part b) differs only slightly from the above one, we just sketch
it. Let (µ, u) be a positive solution of (1.5). Since f is convex it follows that

0 = λΩ
1 (L − µm− λmg(u)

u
) < λ

Ω+
1 (L − µm),
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Figure 2. Bifurcation diagram of (1.5)

and so there exists µ1 > 0 (in fact, µ1 > λ+) such that µ < µ1.
By (2.3) and (2.4), we get that the bifurcation directions are in this case sub-

critical. On the other hand, by (f2) for negative µ, there exists tµ > 0 such that
(µ− λ)tµ + λf(tµ) = 0, and for t < tµ we have that λf(t) + (µ− λ)t < 0. With a
similar reasoning to part a), we can prove that uµ < tµ, and, taking now as strict
supersolution ψ := −λf(uµ)+(λ−µ)uµ, we infer that uµ is linearly asymptotically
stable. The rest of the proof follows analogously. �

Again, we have summarized the results of the above proposition in Figure 2.
We are ready to prove the main result.

Proof of Theorem 1.1. Consider λ > 0 and f satisfying (f1); the other case is
similar. If λ ∈ (0, λ+], then there exists (see Figure 2 (a)) the solution wλ of (1.5)
and so of (1.1). If λ ∈ (λ+,+∞), then there exist at least two positive solutions
wλ 6= uλ, with uλ linearly asymptotically stable.

Assume now that there exists a sequence (λn, un)n∈N of positive solutions with
λn → 0 and ‖un‖∞ ≤ K for some K > 0. Since there does not exist a positive
solution of (1.1) for λ = 0, we obtain that ‖un‖∞ → 0. We see that this is
impossible. Indeed, we define

wn =
un
‖un‖∞

;

then wn is uniformly bounded and, by passing to a suitable sequence again denoted
by wn, we have wn → w∗ as n→∞ for some w ∈ C(Ω) with ‖w∗‖∞ = 1. But

Lwn = λnm(x)
f(un)
‖un‖∞

,

and so Lw∗ = 0, which is absurd. This completes the proof. �
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Remark 2.2.
(1) Note that the existence of C+ (resp. C−) in the case f concave (resp. convex)

is independent of the value of p.
(2) Other conditions can be imposed on p and m to establish a priori bounds for

the positive solutions of (1.5) for compact intervals of R; see [3], [4] and [7].

3. The case when L is selfadjoint and f(u) = u+ up

In the particular case f(u) = u + up and bi ≡ 0 in (1.2), we can complete the
information of Theorem 1.1 (b). Indeed, we are going to show that there exist
positive solutions if and only if λ ∈ (λ−, λ+). Let λ ≤ λ− < 0 (the case λ > λ+

can be treated analogously). Then it is well known that λΩ
1 (L − λm) ≤ 0. Let ϕ1

be the positive eigenfunction associated to L − λm, i.e.,

Lϕ1 − λmϕ1 = λΩ
1 (L − λm)ϕ1.

Multiplying this equation by ϕp1 and using the Green identity, we get

p

∫
Ω

ϕp−1
1

N∑
i,j=1

aijDi(ϕ1)Dj(ϕ1) = λ

∫
Ω

m(x)ϕp+1
1 + λΩ

1 (L − λm)
∫

Ω

ϕp+1
1 ,

and so

(3.1)
∫

Ω

m(x)ϕp+1
1 < 0.

Using Picone’s inequality (see, for example, [5] or Lemma 4.1 in [16]), we obtain∫
Ω

(ϕ1

u

)p
[Luϕ1 − Lϕ1u] < 0,

and hence
λ

∫
Ω

ϕp+1
1 m(x) < λΩ

1 (L − λm)
∫

Ω

ϕp+1
1 /up−1,

which contradicts (3.1).

Remark 3.1. This same argument can be used to prove that (1.5) possesses a posi-
tive solution if and only if µ > λ− (resp. µ < λ+) if f = u− up (resp. f = u+ up).
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