Arc-analytic roots of analytic functions are Lipschitz
HTML articles powered by AMS MathViewer
- by Krzysztof Kurdyka and Laurentiu Paunescu
- Proc. Amer. Math. Soc. 132 (2004), 1693-1702
- DOI: https://doi.org/10.1090/S0002-9939-04-07323-X
- Published electronically: January 27, 2004
- PDF | Request permission
Abstract:
Let $g$ be an arc-analytic function (i.e., analytic on every analytic arc) and assume that for some integer $r$ the function $g^r$ is real analytic. We prove that $g$ is locally Lipschitz; even $C^1$ if $r$ is less than the multiplicity of $g^r$. We show that the result fails if $g^r$ is only a $C^k$, arc-analytic function (even blow-analytic), $k\in {\mathbb N}$. We also give an example of a non-Lipschitz arc-analytic solution of a polynomial equation $P(x,y)= y^d +\sum _{i=1}^{d}a_i(x)y^{d-i}$, where $a_i$ are real analytic functions.References
- Dmitri Alekseevsky, Andreas Kriegl, Peter W. Michor, and Mark Losik, Choosing roots of polynomials smoothly, Israel J. Math. 105 (1998), 203–233. MR 1639759, DOI 10.1007/BF02780330
- Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
- Edward Bierstone and Pierre D. Milman, Arc-analytic functions, Invent. Math. 101 (1990), no. 2, 411–424. MR 1062969, DOI 10.1007/BF01231509
- E. Bierstone, P. D. Milman, and A. Parusiński, A function which is arc-analytic but not continuous, Proc. Amer. Math. Soc. 113 (1991), no. 2, 419–423. MR 1072083, DOI 10.1090/S0002-9939-1991-1072083-4
- Jean Dieudonné, Sur un théorème de Glaeser, J. Analyse Math. 23 (1970), 85–88 (French). MR 269783, DOI 10.1007/BF02795491
- Toshizumi Fukui, Seeking invariants for blow-analytic equivalence, Compositio Math. 105 (1997), no. 1, 95–108. MR 1436747, DOI 10.1023/A:1000177700927
- Toshizumi Fukui, Satoshi Koike, and Tzee-Char Kuo, Blow-analytic equisingularities, properties, problems and progress, Real analytic and algebraic singularities (Nagoya/Sapporo/Hachioji, 1996) Pitman Res. Notes Math. Ser., vol. 381, Longman, Harlow, 1998, pp. 8–29. MR 1607662
- Georges Glaeser, Racine carrée d’une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 203–210 (French). MR 163995
- Shuzo Izumi, Satoshi Koike, and Tzee-Char Kuo, Computations and stability of the Fukui invariant, Compositio Math. 130 (2002), no. 1, 49–73. MR 1883691, DOI 10.1023/A:1013784111756
- Tzee Char Kuo, On classification of real singularities, Invent. Math. 82 (1985), no. 2, 257–262. MR 809714, DOI 10.1007/BF01388802
- Tzee Char Kuo and Yung Chen Lu, On analytic function germs of two complex variables, Topology 16 (1977), no. 4, 299–310. MR 460711, DOI 10.1016/0040-9383(77)90037-4
- T.-C. Kuo and A. Parusiński, Newton polygon relative to an arc, Real and complex singularities (São Carlos, 1998) Chapman & Hall/CRC Res. Notes Math., vol. 412, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 76–93. MR 1715696
- Krzysztof Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), no. 3, 445–462 (French). MR 967023, DOI 10.1007/BF01460044
- Krzysztof Kurdyka, A counterexample to subanalyticity of an arc-analytic function, Proceedings of the Tenth Conference on Analytic Functions (Szczyrk, 1990), 1991, pp. 241–243. MR 1141439, DOI 10.4064/ap-55-1-241-243
- Krzysztof Kurdyka, An arc-analytic function with nondiscrete singular set, Ann. Polon. Math. 59 (1994), no. 3, 251–254. MR 1282776, DOI 10.4064/ap-59-3-251-254
- K. Kurdyka and L. Paunescu, Arc-analyticity is an open property for subanalytic functions, preprint, Univ.-Savoie, 2002.
- S. Łojasiewicz, Ensembles semi-analytiques, preprint, Inst. Hautes Études Sci., 1965.
- Adam Parusiński, Subanalytic functions, Trans. Amer. Math. Soc. 344 (1994), no. 2, 583–595. MR 1160156, DOI 10.1090/S0002-9947-1994-1160156-4
- T. Fukuda, T. Fukui, S. Izumiya, and S. Koike (eds.), Real analytic and algebraic singularities, Pitman Research Notes in Mathematics Series, vol. 381, Longman, Harlow, 1998. Papers from the Singularities Symposium held at Nagoya University, Nagoya, September 30–October 4, 1996, the Seminar on Real Singularities held at Hokkaido University, Sapporo, September 1996, and the Workshop on Singularities and the Geometry of Analytic Varieties held at Tokyo Metropolitan University, Hachioji, October 1996. MR 1608329, DOI 10.1016/S0006-8993(98)00630-1
Bibliographic Information
- Krzysztof Kurdyka
- Affiliation: Laboratoire de Mathématiques (LAMA), Université de Savoie, UMR 5127 CNRS, 73-376 Le Bourget-du-Lac cedex, France
- Email: Krzysztof.Kurdyka@univ-savoie.fr
- Laurentiu Paunescu
- Affiliation: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
- Email: laurent@maths.usyd.edu.au
- Received by editor(s): November 15, 2002
- Published electronically: January 27, 2004
- Additional Notes: The second author thanks Université de Savoie and CNRS for support.
- Communicated by: Jozef Dodziuk
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1693-1702
- MSC (2000): Primary 32B20, 14P20
- DOI: https://doi.org/10.1090/S0002-9939-04-07323-X
- MathSciNet review: 2051130