## Weak compactness is equivalent to the fixed point property in $c_0$

HTML articles powered by AMS MathViewer

- by P. N. Dowling, C. J. Lennard and B. Turett PDF
- Proc. Amer. Math. Soc.
**132**(2004), 1659-1666 Request permission

## Abstract:

A nonempty, closed, bounded, convex subset of $c_0$ has the fixed point property if and only if it is weakly compact.## References

- Dale E. Alspach,
*A fixed point free nonexpansive map*, Proc. Amer. Math. Soc.**82**(1981), no. 3, 423–424. MR**612733**, DOI 10.1090/S0002-9939-1981-0612733-0 - Jon M. Borwein and Brailey Sims,
*Nonexpansive mappings on Banach lattices and related topics*, Houston J. Math.**10**(1984), no. 3, 339–356. MR**763236** - T. Domínguez Benavides, M. A. Japón Pineda and S. Prus,
*Weak compactness and fixed point property for affine mappings*, to appear, J. Functional Analysis. - P. N. Dowling, C. J. Lennard, and B. Turett,
*Characterizations of weakly compact sets and new fixed point free maps in $c_0$*, Studia Math.**154**(2003), no. 3, 277–293. MR**1961112**, DOI 10.4064/sm154-3-7 - K. Goebel and T. Kuczumow,
*Irregular convex sets with fixed-point property for nonexpansive mappings*, Colloq. Math.**40**(1978/79), no. 2, 259–264. MR**547868**, DOI 10.4064/cm-40-2-259-264 - R. Haydon, E. Odell, and Y. Sternfeld,
*A fixed point theorem for a class of star-shaped sets in $C_{0}$*, Israel J. Math.**38**(1981), no. 1-2, 75–81. MR**599477**, DOI 10.1007/BF02761850 - Maria A. Japón Pineda,
*The fixed-point property in Banach spaces containing a copy of $c_0$*, Abstract and Applied Analysis**2003**(2003), 183–192, and in “Proceedings of the International Conference on Fixed-Point Theory and Applications”, Haifa, June 13–19, 2001 (S. Reich, editor), Hindawi Publishing Corporation, 2003, pp. 183–192. - Enrique Llorens-Fuster and Brailey Sims,
*The fixed point property in $c_0$*, Canad. Math. Bull.**41**(1998), no. 4, 413–422. MR**1658231**, DOI 10.4153/CMB-1998-055-2 - B. Maurey,
*Points fixes des contractions de certains faiblement compacts de $L^{1}$*, Seminar on Functional Analysis, 1980–1981, École Polytech., Palaiseau, 1981, pp. Exp. No. VIII, 19 (French). MR**659309** - Peter Meyer-Nieberg,
*Banach lattices*, Universitext, Springer-Verlag, Berlin, 1991. MR**1128093**, DOI 10.1007/978-3-642-76724-1 - E. Odell and Y. Sternfeld,
*A fixed point theorem in $c_{0}$*, Pacific J. Math.**95**(1981), no. 1, 161–177. MR**631667** - Paolo M. Soardi,
*Existence of fixed points of nonexpansive mappings in certain Banach lattices*, Proc. Amer. Math. Soc.**73**(1979), no. 1, 25–29. MR**512051**, DOI 10.1090/S0002-9939-1979-0512051-6

## Additional Information

**P. N. Dowling**- Affiliation: Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056
- Email: dowlinpn@muohio.edu
**C. J. Lennard**- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Email: lennard@pitt.edu
**B. Turett**- Affiliation: Department of Mathematics and Statistics, Oakland University, Rochester, Michigan 48309
- Email: turett@oakland.edu
- Received by editor(s): June 11, 2002
- Published electronically: January 29, 2004
- Additional Notes: The second author thanks Paddy Dowling and the Department of Mathematics and Statistics at Miami University for their hospitality during part of the preparation of this paper. He also acknowledges the financial support of Miami University
- Communicated by: Jonathan M. Borwein
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**132**(2004), 1659-1666 - MSC (2000): Primary 47H10, 47H09, 46E30
- DOI: https://doi.org/10.1090/S0002-9939-04-07436-2
- MathSciNet review: 2051126