Zero product preserving maps of operator-valued functions
HTML articles powered by AMS MathViewer
- by Wen-Fong Ke, Bing-Ren Li and Ngai-Ching Wong
- Proc. Amer. Math. Soc. 132 (2004), 1979-1985
- DOI: https://doi.org/10.1090/S0002-9939-03-07321-0
- Published electronically: December 15, 2003
- PDF | Request permission
Abstract:
Let $X,Y$ be locally compact Hausdorff spaces and ${\mathcal M}$, ${\mathcal N}$ be Banach algebras. Let $\theta : C_0(X,{\mathcal M}) \to C_0(Y, {\mathcal N})$ be a zero product preserving bounded linear map with dense range. We show that $\theta$ is given by a continuous field of algebra homomorphisms from ${\mathcal M}$ into ${\mathcal N}$ if ${\mathcal N}$ is irreducible. As corollaries, such a surjective $\theta$ arises from an algebra homomorphism, provided that ${\mathcal M}$ is a $W^*$-algebra and ${\mathcal N}$ is a semi-simple Banach algebra, or both ${\mathcal M}$ and ${\mathcal N}$ are $C^*$-algebras.References
- Yuri A. Abramovich, Multiplicative representation of disjointness preserving operators, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 3, 265–279. MR 718068, DOI 10.1016/1385-7258(83)90062-8
- J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal. Appl. 282 (2003), no. 1, 48–55.
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Jor-Ting Chan, Operators with the disjoint support property, J. Operator Theory 24 (1990), no. 2, 383–391. MR 1150627
- M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, Mappings preserving zero products, Studia Math. 155 (2003), no. 1, 77–94. MR 1961162, DOI 10.4064/sm155-1-6
- Paul R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275–289. MR 0350442, DOI 10.1016/0022-1236(73)90080-3
- John B. Conway, A course in operator theory, Graduate Studies in Mathematics, vol. 21, American Mathematical Society, Providence, RI, 2000. MR 1721402, DOI 10.1090/gsm/021
- Jianlian Cui and Jinchuan Hou, Linear maps on von Neumann algebras preserving zero products or TR-rank, Bull. Austral. Math. Soc. 65 (2002), no. 1, 79–91. MR 1889381, DOI 10.1017/S0004972700020086
- J. J. Font and S. Hernández, On separating maps between locally compact spaces, Arch. Math. (Basel) 63 (1994), no. 2, 158–165. MR 1289298, DOI 10.1007/BF01189890
- James E. Jamison and M. Rajagopalan, Weighted composition operator on $C(X,E)$, J. Operator Theory 19 (1988), no. 2, 307–317. MR 960982
- Krzysztof Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), no. 2, 139–144. MR 1060366, DOI 10.4153/CMB-1990-024-2
- Jyh-Shyang Jeang and Ngai-Ching Wong, Weighted composition operators of $C_0(X)$’s, J. Math. Anal. Appl. 201 (1996), no. 3, 981–993. MR 1400575, DOI 10.1006/jmaa.1996.0296
- B. E. Johnson, Continuity of homomorphisms of algebras of operators, J. London Math. Soc. 42 (1967), 537–541. MR 215110, DOI 10.1112/jlms/s1-42.1.537
- B.-R. Li, Introduction to operator algebras, World Scientific, Singapore, 1992.
- H. Porta and J. T. Schwartz, Representations of the algebra of all operators in Hilbert space, and related analytic function algebras, Comm. Pure Appl. Math. 20 (1967), 457–492. MR 211275, DOI 10.1002/cpa.3160200211
- Horacio Porta, A note on homomorphisms of operator algebras, Colloq. Math. 20 (1969), 117–119. MR 240642, DOI 10.4064/cm-20-1-117-119
- Volker Runde, The structure of discontinuous homomorphisms from non-commutative $C^\ast$-algebras, Glasgow Math. J. 36 (1994), no. 2, 209–218. MR 1279894, DOI 10.1017/S0017089500030755
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Manfred Wolff, Disjointness preserving operators on $C^*$-algebras, Arch. Math. (Basel) 62 (1994), no. 3, 248–253. MR 1259840, DOI 10.1007/BF01261365
Bibliographic Information
- Wen-Fong Ke
- Affiliation: Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan
- Email: wfke@mail.ncku.edu.tw
- Bing-Ren Li
- Affiliation: Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China
- Email: brli@mail2.math.ac.cn
- Ngai-Ching Wong
- Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Email: wong@math.nsysu.edu.tw
- Received by editor(s): July 25, 2002
- Received by editor(s) in revised form: March 7, 2003
- Published electronically: December 15, 2003
- Communicated by: David R. Larson
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1979-1985
- MSC (2000): Primary 46E40, 47B33
- DOI: https://doi.org/10.1090/S0002-9939-03-07321-0
- MathSciNet review: 2053969