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D-SPACES AND FINITE UNIONS
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(Communicated by Alan Dow)

Abstract. This article is a continuation of a recent paper by the author
and R. Z. Buzyakova. New results are obtained in the direction of the next
natural question: how complex can a space be that is the union of two (of
a finite family) “nice” subspaces? Our approach is based on the notion of a
D-space introduced by E. van Douwen and on a generalization of this notion,

the notion of aD-space. It is proved that if a space X is the union of a finite
family of subparacompact subspaces, then X is an aD-space. Under (CH), it
follows that if a separable normal T1-space X is the union of a finite number
of subparacompact subspaces, then X is Lindelöf. It is also established that
if a regular space X is the union of a finite family of subspaces with a point-
countable base, then X is a D-space. Finally, a certain structure theorem for
unions of finite families of spaces with a point-countable base is established,
and numerous corollaries are derived from it. Also, many new open problems
are formulated.

1. Some general facts and definitions

Addition theorems occupy an important place in general topology. One of the
main questions considered in this paper is the following one: how complex can a
space be if it is the union of two (of a finite family) “nice” subspaces? This might
be especially important to know when we are constructing concrete spaces with a
certain combination of properties. In [2] a necessary condition for a space to be
the union of two metrizable subspaces was established. We continue this line of
investigation in this article.

The Alexandroff compactification of any uncountable discrete space is the union
of two metrizable (in fact, discrete) subspaces, while it is not first countable and,
therefore, not metrizable. Another example of a non-metrizable compactum, which
is the union of two metrizable subspaces, is the double circumference of Alexandroff
and Urysohn. This space is first countable and, hence, Fréchet-Urysohn. In fact, E.
Michael and M. E. Rudin established a curious fact: if a compact Hausdorff space
X is the union of two metrizable compacta, then X is an Eberlein compactum [12],
and therefore, X is Fréchet-Urysohn.

We define the extent e(X) in a slightly unusual way (following [2]). A subset
A of a space X is discrete in X (locally finite in X) if every point x ∈ X has an
open neighbourhood Ox containing not more than one element (only finitely many
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elements) of A. The extent e(X) of a space X is the smallest infinite cardinal
number τ such that |A| ≤ τ , for every subset A of X that is locally finite in X .
This definition obviously coincides with the usual definition of the extent of X for
all T1-spaces.

Our approach to addition theorems is based on the notion of a D-space, intro-
duced by E. van Douwen in [8], and on a generalization of it. A neighbourhood
assignment on a topological space X is a mapping φ of X into the topology T of
X such that x ∈ φ(x), for each x ∈ X . A space X is called a D-space if, for every
neighbourhood assignment φ on X , there exists a subset A of X , locally finite in
X , such that the family φ(A) covers X . A principal property of D-spaces is that
the extent coincides with the Lindelöf number in such spaces. In particular, every
countably compact D-space is compact, and every D-space with countable extent
is Lindelöf. These facts make the notion of a D-space a useful tool in studying
covering properties.

It is still an open problem (E. van Douwen, [8]) whether every regular Lindelöf
space is a D-space. It is even unknown if every hereditarily Lindelöf regular T1-
space is a D-space. Van Douwen also asked whether there exists a subparacompact
or metacompact space that is not a D-space. These questions are still open. Recall
that a space X is said to be subparacompact if every open covering of X can be
refined by a σ-discrete closed covering [4].

All metrizable spaces, and, more generally, all Moore spaces and semi-stratifiable
spaces, are D-spaces [3]. A much more general result was recently obtained by R.
Z. Buzyakova: every strong Σ-space is a D-space [6]. It follows from her theorem
that all Tychonoff spaces with a countable network, all σ-spaces, all paracompact
p-spaces, and all Lindelöf Σ-spaces (that is, all Tychonoff continuous images of
Lindelöf p-spaces) are D-spaces. Recall that a σ-space is a space with a σ-discrete
network.

On the other hand, there exists a Hausdorff, locally compact, locally countable,
separable, first countable, submetrizable, σ-discrete, realcompact space with a Gδ
diagonal that is not a D-space: the amazing space Γ constructed by H. H. Wicke
and E. van Douwen in [9] has all these properties. Thus, there exists a locally
compact σ-metrizable Tychonoff space with the diagonal Gδ that is not a D-space.

A space X is an aD-space [2] if for each closed subset F of X and each open
covering γ of X there exist a subset A of F , locally finite in F , and a mapping φ of
A into γ such that a ∈ φ(a), for each a ∈ A, and the family φ(A) = {φ(a) : a ∈ A}
covers F (any such mapping φ will be called a pointer (from A to γ)).

Clearly, every closed subspace of an aD-space is an aD-space. It was proved in
[3] that every subparacompact space is an aD-space. Below we use the next two
easy-to-prove statements.

Lemma 1.1. If X = Y ∪ Z, where Y is an aD-space (D-space) and Y is closed
in X, and every subspace of Z closed in X is an aD-space (a D-space), then X is
also an aD-space (a D-space, respectively).

Proposition 1.2 ([2]). If X = Y ∪ Z, where Y and Z are aD-spaces (D-spaces)
and Y is closed in X, then X is also an aD-space (a D-space, respectively).

Notice the following crucial property of aD-spaces [2]: every aD-space of count-
able extent is Lindelöf. Therefore, we have the next statement, which allows us to
identify many non-aD-spaces:
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Proposition 1.3. Every pseudocompact aD-space of countable extent is compact.

A Tychonoff space that is the union of a countable collection of metrizable sub-
spaces can have rather complex structure and an unusual combination of properties:
it suffices to refer to the σ-discrete space Γ of van Douwen and Wicke. It is natural
to ask whether the union of a finite collection of metrizable spaces can be as compli-
cated as the space Γ. In that direction, it was shown in [2] that if a regular space X
is the union of finitely many metrizable subspaces, then X is a D-space. The proof
of this statement was based on the following result of Buzyakova [2]: every space
with a point-countable base is a D-space. Since every D-space of countable extent
is Lindelöf, it follows that every regular space of countable extent, if it is the union
of a finite family of metrizable spaces, is Lindelöf [2]. Note that the space Γ is a
Tychonoff σ-metrizable space of countable extent that is not a D-space. However,
it was shown in [2] that if a regular space X is the union of a countable family
γ of dense metrizable subspaces, then X is a D-space. Also, if a space X is the
union of a countable family of open metrizable subspaces, then X is a D-space
[2]. Both results follow from the principal theorem in [2] that every space with
a point-countable base is a D-space. The next theorem on finite unions is a new
result.

Theorem 1.4. If a space X is the union of a finite collection {Xi : i = 1, ..., k} of
subparacompact subpaces, then X is an aD-space.

We will prove this statement by induction. To make induction possible, we need
the following lemma:

Lemma 1.5. Suppose that X is a space, Y a subspace of X such that every closed
subspace F of X contained in X \ Y is an aD-space, and γ is an open covering of
X. Then, for every locally finite in Y family η of subsets of Y refining γ, there exist
a locally finite in X subset A and a pointer f : A→ γ such that

⋃
η ⊂

⋃
f(A).

Proof. Let F be the set of all elements of X at which the family η is not locally
finite. Clearly, F is a closed subset of X disjoint from Y . Therefore, F is an aD-
space, and there exist a locally finite in F subset B of F and a pointer g : B → γ
such that F is covered by the subfamily g(B) of γ. Put U =

⋃
g(B), H = (

⋃
η)\U ,

and ξ = {P \ U : P ∈ η, P 6= ∅}. Clearly, the family ξ is locally finite in X and⋃
ξ = H . For each P ∈ ξ fix a cP ∈ P and VP ∈ γ such that P ⊂ VP (recall that

η refines γ). Put C = {cP : P ∈ ξ}, A = B ∪ C, f(cP ) = VP , for each cP ∈ C,
and f(b) = g(b), for each b ∈ B. Then f is a pointer from A to γ and, clearly,
f(A) ⊃ (g(B) ∪ f(C)) ⊃ U ∪ (

⋃
η) ⊃

⋃
η, and the set A is locally finite in X . �

Now we are going to present a proof of Theorem 1.4.

Proof. We argue by induction. If k = 0, then X = ∅ and the statement is obviously
true. Assume now that the statement holds for k = n, for some n ∈ ω, and let us
show that it is also true for k = n+ 1.

Let γ be an open covering of X . For each i = 1, ..., n + 1, fix a covering Pi =⋃
{ηij : j ∈ ω} of Xi satisfying the following conditions:
1) Pi refines γ;
2) each element of Pi is a closed subset of the space Xi;
3) the family ηij is discrete in Xi, for each i = 1, ..., n+ 1 and j ∈ ω.
If a subset F of X \Xi is closed in X , then F is the union of not more than n

subparacompact subspaces, since F ∩Xj is closed in Xj , for each j = 1, ..., n + 1.
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It follows by the inductive assumption that F is an aD-space. Therefore, Lemma
1.5 is applicable: for each i = 1, ..., n+ 1 there exist a locally finite in X set Di,1

and a pointer fi,1 : Di,1 → γ such that
⋃
ηi,1 is covered by fi,1(Di,1). Note that we

can define the sets Di,1 and pointers fi,1 one after another in such a way that Dj,1

will lie outside of fi,1(Di,1) whenever i < j. Put D1 =
⋃
{Di,1 : i = 1, ..., n + 1},

and define a pointer f1 : D1 → γ by the requirement that the restriction of f1 to
Di,1 coincides with fi,1, 1 = 1, ..., n+1. Put U1 =

⋃
f1(D1). Clearly, U1 is an open

subset of X .
Let us assume that we have already defined an open subset Uj of X , for some

positive integer j. Obviously, we can apply Lemma 1.5 to the space X \ Uj and
obtain, for each i = 1, ..., n+ 1, a locally finite in X \Uj set Di,(j+1) and a pointer
fi,(j+1) : Di,(j+1) → γ such that

⋃
ηi,(j+1) \Uj is covered by fi,(j+1)(Di,(j+1)). Note

that we can define the sets Di,(j+1) and pointers fi,(j+1) one after another in such
a way that Dm,(j+1) will lie outside of fl,(j+1)(Dl,(j+1)) whenever l < m.

Put Dj+1 =
⋃
{Di,(j+1) : i = 1, ..., n+ 1}, and define a pointer fj+1 : Dj+1 → γ

by the requirement that the restriction of fj+1 to Di,(j+1) coincides with fi,(j+1),
1 = 1, ..., n+ 1. Put Uj+1 =

⋃
fj+1(Dj+1)∪Uj. Clearly, Uj+1 is an open subset of

X .
The family {Uj : j ∈ ω} of open subsets of X obtained in this way covers X ,

since all elements of P are covered by it. Since Dj ⊂ Uj ⊂ Uj+1 and Dj+1∩Uj = ∅,
the set D =

⋃
{Dj : j ∈ ω} is locally finite in X . Thus, the pointer f : D → γ

defined by the requirement that the restriction of f to Di coincides with fi is a
pointer we are looking for. �

Problem 1.6. Suppose that a space X is the union of a finite collection {Xi : i =
1, ..., k} of Moore spaces. Is then X a D-space?

Problem 1.7. Suppose that X = Y ∪ Z, where Y and Z are D-spaces. Is X a
D-space? Is X an aD-space?

Problem 1.8. Suppose that X = Y ∪ Z, where Y and Z are D-spaces, and X is
countably compact. Is X compact?

Problem 1.9. Suppose X is a countably compact space that is the union of a
countable family of D-spaces. Is X compact?

A partial answer to the last question was given in [1], where it was shown that
if a linearly ordered countably compact space X is the union of a countable family
of aD-spaces, then X is compact.

Theorem 1.10 (CH). If a separable normal T1-space X is the union of a finite
number of subparacompact subspaces, then X is Lindelöf.

Proof. It follows from Theorem 1.4 that X is an aD-space. On the other hand, from
a lemma of F. B. Jones [10] and CH it follows that the extent of X is countable.
Therefore, X is Lindelöf [2]. �

Even the following corollary seems to be new.

Corollary 1.11 (CH). If a separable normal T1-space X is the union of a finite
number of metrizable subspaces, then X is Lindelöf.
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Of course, one cannot just drop (CH) in the above two statements, since it is
consistent that there exists a normal Mrowka space that is not Lindelöf (see [4],
[10]).

It was observed in [1] that every countably metacompact σ-metrizable (σ-para-
compact) space of countable extent is Lindelöf. However, the answer to the next
question remains unknown:

Problem 1.12. Is every countably metacompact σ-metrizable space a D-space?
An aD-space?

Note that even the union of two discrete subspaces need not be countably meta-
compact, as is witnessed by a space constructed by J. Chaber in [7], Example 2.4
(see also [14]). Recall that a subset P of a space X is said to be locally closed if P
is open in its closure (that is, if P can be represented as the intersection of an open
subset of X with a closed subset of X). For example, every discrete subspace of a
space X is locally closed in X .

Lemma 1.13. If a space Y is the union of a finite collection of locally closed
D-spaces, then Y is a D-space.

Proof. We argue by induction. Let Y = P1 ∪ ... ∪ Pn+1 where each Pi is locally
closed in X and a D-space. Assume that the lemma holds whenever the number of
summands does not exceed n. For i = 1, ..., n+1 put Fi = Pi \Pi. Then Fi is closed
in Y and Pi ∩ Fi = ∅. Therefore, Fi is the union of ≤ n locally closed D-spaces
Pj ∩Fi. By the inductive assumption, it follows that each Fi is a D-space. Clearly,
Pi = Pi ∪ Fi. Since Fi is closed in Pi, and both Fi and Pi are D-spaces, it follows
that Pi is a D-space, for each i = 1, ..., n + 1. Hence, Y is also a D-space, as the
union of a finite number of closed D-spaces. �

The next theorem partially generalizes one of the main results in [2], stating that
every space with a point-countable base is a D-space.

Theorem 1.14. Suppose that X = X1 ∪ ... ∪Xk, where X is a regular space and
each Xi is a space with a point-countable base. Then X is a D-space.

Proof. We again argue by induction. Assume that the statement is true for not more
than k− 1 summands. Put Hi,j = Xi ∩Xj , Wi,j = Xi \Hi,j , for i, j = 1, ..., k, and
F =

⋂
{Hi,j : i, j = 1, ..., k}.

Let i 6= j. Then, obviously, Wi,j ∩ Xj = ∅. Therefore, Wi,j is the union of
≤ k − 1 spaces with a point-countable base, and the inductive assumption implies
that Wi,j is a D-space. Clearly, Wi,j is locally closed in X . The space Vi = X \Xi

is also locally closed in X , for each i = 1, ..., k. Since the sets Vi and Xi are disjoint,
the space Vi is the union of ≤ k − 1 spaces with a point-countable base, and the
inductive assumption implies that Vi is a D-space. It follows from Lemma 1.13 that
the subspace E = (

⋃
{Wi,j : i, j = 1, ..., k})∪(

⋃
{Vi : i = 1, ..., k}) of X is a D-space

(note that Wi,j is empty whenever i = j). Take any x ∈ X \ E. Then x ∈ Xi and
x /∈ Wi,j , for all i, j = 1, ..., k. It follows that x ∈ Hi,j , for all i, j = 1, ..., k. Hence,
x ∈ F . Thus, X = E ∪ F .

Let us show that the space F has a point-countable base. Fix a point-countable
base Bi in each space Xi, i = 1, ..., k. For each V ∈ Bi, let φ(V ) be the largest
open subset of Xi such that φ(V )∩Xi = V . Put Gi = {φ(V ) : V ∈ Bi}, G =

⋃
{Gi :

i = 1, ..., k}, and S = {W ∩ F : W ∈ G}. From regularity of X it easily follows
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that S is a base of the space F . Claim: The family S is point-countable. Clearly, to
prove the claim it is enough to show that, for any j = 1, ..., k and any x ∈ F , the
family Gj is countable at x; that is, only countably many elements of Gj contain x.
Obviously, x ∈ Xi, for some i = 1, ..., k. Then x ∈ F ⊂ Hi,j = Xi ∩Xj . However,
the space Xi is first countable at the point x, since x ∈ Xi and the space X is
regular. It follows that the tightness of the space Xi at the point x is countable,
and there exists a countable subset M ⊂ Xi ∩Xj such that x ∈ M . Let γx be the
family of all elements of Gj containing x. Clearly, x ∈ Xj , and each W ∈ γx is an
open neighbourhood of x in Xj . Since M ⊂ Xj and x ∈M , every W ∈ γx contains
at least one point of M . However, M is countable, and the family Gj is point-
countable at each point of M , since M ⊂ Xj and Bj is a point-countable base of
the space Xj. Therefore, γx is also countable. It follows that S is a point-countable
base of F . Hence, F is a D-space [2]. Since F is closed in X , and X = E ∪ F ,
where E is also a D-space, we conclude that X is a D-space. �
Corollary 1.15. If a regular space X of countable extent is the union of a finite
collection of subspaces with a point-countable base, then X is Lindelöf.

Recall that the spread of a space X is countable if every discrete subspace of X
is countable.

Corollary 1.16. If a pseudocompact space X of countable spread is the union of
a finite collection of subspaces with a point-countable base, then X is a hereditarily
Lindelöf compactum.

Proof. Every subspace Y of X is a space of countable extent and has a point-
countable base. Therefore, by Corollary 1.15, X is hereditarily Lindelöf. It follows
that X is compact. �

A closer look at the proof of Theorem 1.14 leads us to the next general statement,
interesting in itself:

Theorem 1.17. If a regular space X is the union of a finite family of subspaces
with a point-countable base, then X is the union of a finite collection of locally
closed subspaces with a point-countable base.

Proof. We argue by induction, using the construction from the proof of Theorem
1.14. To make the induction possible, it suffices to notice that every locally closed
subset Z of a locally closed subspace Y of a space X is locally closed in X . Note
that the number of summands in the second representation of X can be much larger
than in the first one. �

The next lemma is obvious.

Lemma 1.18. If A is a locally closed subset of a regular space X, and A is not
nowhere dense in X, then A contains a nonempty open subset of X.

Theorem 1.19. If a regular space X is the union of a finite family of subspaces with
a point-countable base, then X has a dense open subspace with a point-countable
base.

Proof. By Theorem 1.17, X is the union of a finite collection γ of locally closed
subspaces with a point-countable base. The same is true for every nonempty open
subset U of X . Since no space is the union of a finite family of nowhere dense
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subspaces, it follows that, for at least one Y ∈ γ, Y ∩ U is not nowhere dense in
U . From Lemma 1.18 it follows that there exists a nonempty open subset V of U
such that V ⊂ Y ∩ U . Clearly, V is open in X and V has a point-countable base.
Now a standard application of Zorn’s Lemma provides us with a disjoint family η
of nonempty open subsets of X such that

⋃
η is dense in X and each element of η

has a point countable base. Clearly, Z =
⋃
η is a dense open subspace of X with

a point-countable base. �

Corollary 1.20. If X is a regular countably compact T1-space that is the union of
a finite collection of subspaces with a point-countable base, then X is the union of
a finite family of locally compact metrizable subspaces (which are locally closed in
X).

Proof. By Theorem 1.17, X can be represented as the union of a finite family η
of locally closed subspaces with a point-countable base. Observe that each Y ∈ η
is open in Y . Every countably compact T1-space with a point-countable base is
metrizable and compact, by A. Mischenko’s theorem [10]. Also, every locally sepa-
rable, locally metrizable Hausdorff space with a point-countable base is metrizable,
by a theorem of P. Alexandroff and P. Urysohn [10]. It follows that every element
of η is a locally compact metrizable space. �

Notice that, under the assumptions in Corollary 1.20, the space X is compact.
Indeed, it follows from the results in [15] that if a countably compact space X is
the union of a countable collection of subspaces with a point-countable base, then
X is compact. See also [13].

Corollary 1.21. If X is a regular Lindelöf p-space that is the union of a finite
collection of subspaces with a point-countable base, then X is the union of a finite
family of locally separable metrizable subspaces (which are locally closed in X).

Proof. The proof is practically the same as the proof of Corollary 1.20; it is enough
to observe that every Lindelöf p-space with a point-countable base is separable
metrizable [10]. �

After the above arguments, the next statement becomes obvious. It generalizes
an interesting result of M. Ismail and A. Szymanski from [11], where they studied
locally compact Hausdorff spaces that are unions of finite families of metrizable
subspaces.

Corollary 1.22. If a Lindelöf p-space X is the union of a finite family of subspaces
with a point-countable base, then X has an open dense metrizable subspace.
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