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GEOMETRY OF EPIMORPHISMS AND FRAMES
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(Communicated by David R. Larson)

Dedicated to our friend Jorge Solomı́n

Abstract. Using a bijection between the set BH of all Bessel sequences in
a (separable) Hilbert space H and the space L(`2,H) of all (bounded linear)
operators from `2 to H, we endow the set F of all frames in H with a natural
topology for which we determine the connected components of F . We show
that each component is a homogeneous space of the group GL(`2) of invertible
operators of `2. This geometrical result shows that every smooth curve in F
can be lifted to a curve in GL(`2): given a smooth curve γ in F such that
γ(0) = Ξ, there exists a smooth curve Γ in GL(`2) such that γ = Γ · Ξ, where
the dot indicates the action of GL(`2) over F . We also present a similar study
of the set of Riesz sequences.

1. Introduction

Let H be a (complex, separable) Hilbert space, L(`2,H) the algebra of all
bounded linear operators from `2 to H and E the subset of L(`2,H) consisting
of all epimorphisms from `2 onto H.

A sequence {ξn} of elements of H is called a frame if there exist positive con-
stants A,B such that

(1.1) A‖ξ‖2 ≤
∑
|〈ξ, ξn〉|2 ≤ B‖ξ‖2

for all ξ ∈ H. Denote by F the set of all frames in H. Frames have been introduced
by Duffin and Schaeffer in [13], in connection with nonharmonic Fourier series,
but they attracted more attention since the begining of wavelet theory due, in
particular, to the fundamental paper [11]. The reader will find many relevant
results and facts on frame theory in the book [10] by I. Daubechies, and in several
papers, in particular the survey by C. Heil and D. Walnut [15], the monograph [14]
by D. Han and D. Larson, the exposition [4] of P. Casazza and the survey [5] by O.
Christensen. The papers [16] by J. R. Holub and [1] by A. Aldroubi contain some
results related to ours. Also, in [2], R. Balan introduces a decomposition in F and
defines a metric on each “component” of the partition. In this paper, we proceed in
a different way by defining a natural topology in the set F of all frames Ξ = {ξn} in
H. We characterize the connected components of F and show that each component
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is a homogeneous space of the group GL(`2) of all invertible operators on `2. These
facts come from the existence of a natural action of GL(`2) over F . We get all
these results in an indirect way. In fact, we first study the topology of the set E of
all (bounded linear) epimorphisms `2 → H and define an action GL(`2)×E → E to
characterize the connected components of E . Then, we define a Banach space BH
of sequences in H (“Bessel sequences”) and a natural isomorphism from L(`2,H)
onto BH that maps E onto F . By means of this isomorphism all facts about E are
translated to F .

The paper is divided into two parts: in the first part we endow E with the
topology induced by the operator norm in L(`2,H). E is an open subset of L(`2,H)
and there is a natural action of GL(`2) over E , by multiplication on the right. The
orbits of this action are the connected components of E . More precisely, for each
n ∈ N ∪ {+∞} the set En = {T ∈ E : dim kerT = n} is a connected component
of E and, as an orbit of the action, it is a homogeneous space of GL(`2). As
such, it has several pleasant geometric properties. In particular, continuous (resp.
smooth) curves in En lift to continuous (resp. smooth) curves in GL(`2). Thus,
any curve γ in En has the form γ(t) = T · Γ(t) for some curve Γ in GL(`2). In the
second part of the paper, we observe that the bijection between F and E is the
restriction of a natural bijection between L(`2,H) and the space BH of all Bessel
sequences in H. It turns out that there is a natural Banach space structure on BH
such that the bijection is an isomorphism of Banach spaces. Thus, the connected
components of F , which correspond bijectively with the connected components of
E , are easily determined, and the fibration properties of these components allow us
to characterize their curves by mean of curves in GL(`2). Finally, using the facts
that epimorphisms correspond bijectively with monomorphisms with closed range
and that these operators correspond with the set R of Riesz sequences, we get a
similar geometrical description of R.

2. Geometry of epimorphisms

Throughout,H denotes a Hilbert space, L(H) is the algebra of all linear bounded
operators on H, L(H)+ is the subset of L(H) of all (selfadjoint) positive operators,
GL(H) is the group of all invertible operators in L(H) and GL(H)+ = GL(H) ∩
L(H)+ (positive invertible operators). For every C ∈ L(H) its range is denoted by
R(C) and its nullspace by kerC.

Consider two Hilbert spacesH and K and the space L(H,K) of all linear bounded
operators from H to K. We denote by E the set of all epimorphisms in L(H,K):

E = {T ∈ L(H,K) : R(T ) = K}.
An interesting subset of E is the space Eo of co-isometries:

Eo = {T ∈ L(H,K) : TT ∗ = IK}.
The following result is elementary and will be used frequently:

Proposition 2.1. Let T ∈ L(H,K). Then the following properties are equivalent:
(1) T ∈ E;
(2) T ∗ is injective and R(T ∗) is closed (i.e., T ∗ is bounded from below);
(3) there exists S ∈ L(K,H) such that TS = IK;
(4) TT ∗ ∈ GL(K);
(5) TAT ∗ ∈ GL(K)+ for some (or any) A ∈ GL(H)+;
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(6) the transformation X 7→ TX is an epimorphism from L(H) onto L(H,K);

Remark 2.2. Recall the left polar decomposition of T ∈ L(H,K): there exist A ∈
L(H)+ and a partial isometry V ∈ L(H,K) such that T = V A. A is uniquely
determined by the equation A = |T | = (T ∗T )1/2, and V is unique provided that
kerV = kerT .

We also have the right polar decomposition of T ∈ L(H,K): there exist B ∈
L(K)+ and a partial isometry W ∈ L(H,K) such that T = BW . B is uniquely
determined by the equation B = |T ∗| = (TT ∗)1/2, and W is unique provided that
kerW = kerT .

With these facts and notation, we can add two different equivalent conditions to
the list of Proposition 2.1:

7. B ∈ GL(K);
8. W ∈ Eo (i.e., W is a co-isometry), and R(T ) is closed.

In the rest of this section, we only consider the topology induced on L(H,K)
and its subsets by the operator norm.

Corollary 2.3. E is open in L(H,K), and Eo is closed in E.

Proof. Consider the continuous map α : L(H,K) → L(K) given by α(T ) = TT ∗,
T ∈ L(H,K). Then E = α−1(GL(H)) and Eo = α−1({I}). �

Recall that, given a topological space X and A ⊆ X , then A is said to be a
strong deformation retract of X if there is a continuous map ρ : X × [0, 1] → X
such that

(1) for all x ∈ X , ρ(x, 0) = x and ρ(x, 1) ∈ A;
(2) for all a ∈ A and t ∈ [0, 1], ρ(a, t) = a.

The map ρ is called a strong deformation retraction. In this case, X and A have
the same homotopy groups (see, for example, [17]). The following observation will
be used later.

Proposition 2.4. Eo is a strong deformation retract of E.

Proof. Consider the map ρ : E → Eo given by ρ(T ) = (TT ∗)−1/2T . Clearly ρ is a
continuous retraction. The map ρ : E × [0, 1]→ E given by

ρ(T, t) = ρt(T ) = (TT ∗)−t/2T, (T, t) ∈ E × [0, 1],

defines a strong deformation retraction between 1E and ρ. �

If T ∈ Eo, then it is easy to see that TT ∗ = IK and T ∗T = P(kerT )⊥ = PR(T∗).
As a consequence, we get that the map θ : E → L(H) given by θ(T ) = P(kerT )⊥

is continuous. Recall that the Moore-Penrose pseudoinverse of a closed range op-
erator T ∈ L(H,K) is the unique operator T † ∈ L(K,H) that satisfies TT †T = T ,
T †TT † = T †, (TT †)∗ = TT † and (T †T )∗ = T †T . The reader is referred to [12] or
[18] for properties and applications of this notion. One of the properties of T † that
we need is the identity T †T = P(kerT )⊥ . From this fact and the continuity of θ, we
get:

Proposition 2.5. If T ∈ E, the Moore-Penrose pseudoinverse of T is

T † = T ∗(TT ∗)−1 and P(kerT )⊥ = T ∗(TT ∗)−1T.
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Proof. Let X = T ∗(TT ∗)−1. Then TX = I, XTX = X and TXT = T . On
the other hand, TX = I and XT = T ∗(TT ∗)−1T are both selfadjoint. Therefore,
X = T † and P(kerT )⊥ = T †T = T ∗(TT ∗)−1T . �

Corollary 2.6. The maps µ : E → L(K,H) and θ : E → L(H) defined by µ(T ) = T †

and θ(T ) = P(ker T )⊥ , respectively, are real analytic.

The action of GL(H) on E. Consider the following left action of GL(H) on E :

GL(H)× E → E , (V, T ) 7→ TV −1.

The orbit of T ∈ E by this action is the set T ·GL(H).

Theorem 2.7. Let T ∈ E. Then the orbit T ·GL(H) is open, and it is the connected
component of T in E.

Proof. Since GL(H) is open and connected in L(H) and X 7→ TX is continuous
and linear from L(H) onto L(H,K), it follows that T ·GL(H) is open (by the open
mapping theorem) and connected in L(H,K). �

For each n ∈ N ∪ {∞}, define the sets

En = {T ∈ E : dim kerT = n} and Eon := {S ∈ Eo : dim kerS = n},

so that
E =

⋃
n∈N∪{∞}

En and Eo =
⋃

n∈N∪{∞}
Eon.

We prove that the connected components of E (resp. Eo) are, precisely, En (resp.
Eon).

Proposition 2.8. Let n ∈ N ∪ {∞}. Then:

(1) Given T1, T2 ∈ En, there exists V ∈ GL(H) such that T2 = T1V . In other
words, if T ∈ En, then En = T ·GL(H).

(2) Given T1, T2 ∈ Eon, there exists u ∈ U(H) such that T2 = T1U . In other
words, if T ∈ Eon, then Eon = T · U(H) = {TU∗ : U ∈ U(H)}.

Proof. (1) The operator V1 = T †1T2 : kerT⊥2 → kerT⊥1 is invertible. It can be “com-
pleted” to an invertible operator V = V1 +V2 ∈ GL(H), choosing any isomorphism
V2 : kerT2 → kerT1. It is clear that T1V = T1V1 = T2.

(2) It follows the same lines, but V1 and V2 are unitaries.
�

Remark 2.9. As the referee pointed out to us, the connected components of the set
of semi-Fredholm operators in L(H,K) are determined by the index (see Cordes and
Labrousse [9]). From this fact it can be easily deduced that the connected compo-
nents of the set of all epimorphisms are determined by the nullity (i.e., dimension
of the nullspace). The advantage of the present approach is that the connected
components are characterized as the orbits of a natural action of GL(H) over E .
Observe that, in order to get the complete result of Cordes and Labrousse by a
similar method, one should define an action of a convenient group over the set of
all semi-Fredholm operators in L(H,K). This approach is possible. We plan to do
it elsewhere.
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Proposition 2.10. Let T ∈ E. Then the mapping

τT : GL(H)→ E , τT (V ) = TV −1

admits analytic local cross sections.

Proof. We must prove that for every T ∈ E there exists a neighborhood B of T in
E and an analytic map σ : B → GL(H) such that τT (σ(T ′)) = T ′ for all T ′ ∈ B.
Choose S ∈ L(K,H) such that TS = IK. Taking ε = ‖S‖−1, if W ∈ L(H,K) and
‖T −W‖ < ε, then ‖IK −WS‖ ≤ ‖T −W‖ ‖S‖ < 1. Hence WS ∈ GL(K) and
W ∈ E . Also, SW + (IH − ST ) ∈ GL(H), because ‖SW + (IH − ST ) − IH‖ ≤
‖S‖ ‖W − T ‖ < 1. For W ∈ L(H,K) such that ‖T −W‖ < ε, define

σ(W ) =
(
SW + (IH − ST )

)−1

.

Then the map σ is analytic, and it is a local cross section of τT , because τT (σ(W )) =
Tσ(W )−1 = T (SW + (IH − ST )) = W . �

Corollary 2.11. Let T ∈ E and n = dim kerT . Then En = T · GL(H) is homeo-
morphic to the homogeneous space GL(H)/IT , where IT is the isotropy group at T
of the action of GL(H) on E, i.e.,

(2.1) IT = {V ∈ GL(H) : TV = T }.

Proposition 2.12. Let T ∈ E, and denote by P = T †T = PkerT⊥ . Then the
isotropy group IT of T , defined in (2.1), can be characterized in the matrix repre-
sentation of L(H) given by P , by

(2.2) IT =
{(

1 0
x y

)
: y ∈ GL(kerT )

}
.

Proof. The matrix form of T is T =
(
T1 0
T2 0

)
with T ∗1 T1 +T ∗2 T2 ∈ GL(kerT⊥)+.

If V =
(
a b
x y

)
∈ GL(H), then

(2.3) TV = T ⇐⇒
(
T1a T1b
T2a T2b

)
= T.

This shows that if a = 1 and b = 0, then V ∈ IT . On the other hand, if TV = T ,
then by equation (2.3),

T ∗T =
(
T ∗1 T1 + T ∗2 T2 0

0 0

)
=
(
a∗(T ∗1 T1 + T ∗2 T2)a ∗

∗ b∗(T ∗1 T1 + T ∗2 T2)b

)
,

showing that a = 1 and b = 0. Finally, the fact that y ∈ GL(kerT ) is equivalent to
the fact that V ∈ GL(H). �

Remark 2.13. Fix n ∈ N∪{∞}. En has a natural structure of an analytic subman-
ifold of L(H,K) as an open subset. By equation (2.2), IT is a regular Lie-Banach
subgroup of GL(H), and by Proposition 2.10, the map τT : GL(H) → En is open.
Therefore, the above-mentioned is the unique structure of a differentiable manifold
of En that makes the map τT a submersion. This means that the homeomorphism
of Corollary 2.11 becomes a diffeomorphism.
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Remark 2.14. A particularly interesting local cross section for τT is

(2.4) σ†(W ) =
(
T †W + (1− T †T )

)−1

=
(
T †W + PkerT

)−1

,

defined for W ∈ L(H,K) such that ‖T −W‖ < ‖T †‖−1. The advantage of this
section over the one defined in the proof of Proposition 2.10 is that the map

(T,W ) 7→ σ†(W )

is real analytic in both variables.

Theorem 2.15. Consider the map α : E → GL(K)+ given by α(T ) = TT ∗ (T ∈ E).
Then for every T ∈ E it follows that

α(T ·GL(H)) = GL(K)+.

Proof. First we prove that {TAT ∗ : A ∈ GL(H)+} = GL(K)+: if B ∈ GL(K)+,
then A = T †B(T †)∗+PkerT ∈ GL(H)+ (because R(T †) = (kerT )⊥) and it satisfies
TAT ∗ = B. The reverse inclusion follows from Proposition 2.1.

Now, α(T ·GL(H)) = {TV V ∗T ∗ : V ∈ GL(H)} = {TAT ∗ : A ∈ GL(H)+}. �

Corollary 2.16. The mapping α : E → GL(K)+ is a splitting bundle with fibres
α−1(A) = A1/2Eo. Moreover, for every n ∈ N ∪ {0,∞}, α|En : En → GL(K) is a
splitting bundle with global cross section σ(A) = A1/2Tn, for a fixed Tn ∈ Eon. �

We are interested in the fibres of the bundle αn : En → GL(K)+, given by
αn = α|En , ı.e., αn(T ) = TT ∗, T ∈ En. Fix S ∈ GL(K)+ and T ∈ En such that
TT ∗ = S, i.e., T ∈ α−1

n (S). Clearly, for every U ∈ U(H), also TU∗ ∈ α−1
n (S).

Moreover:

Proposition 2.17. Let S ∈ GL(K)+ and T ∈ En such that TT ∗ = S. Then

(2.5) α−1
n (S) = T · U(H) = {TU∗ : U ∈ U(H)}.

Proof. By Corollary 2.16, α−1
n (S) = S1/2Eon. By Proposition 2.8, given V1, V2 ∈ Eon,

there exists U ∈ U(H) such that V1U
∗ = V2, showing formula (2.5). �

Remark 2.18. Since the fibration αn : En → GL(K)+ splits by means of the global
cross section defined in Corollary 2.16, it follows that, for every fixed T ∈ En, En is
diffeomorphic to GL(K)+ × T · U(H). The geometry of the space GL(K)+ is very
well studied; see [8], [6]. The study of the geometry of the fibre T · U(H) (which is
also an orbit) will be done elsewhere.

Splitting curves. Fix T ∈ En. Recall that the space En is open in L(H,K) and
that En = T · GL(H) is the orbit of T by the action of GL(H). We shall describe
now the geometry of En. The proofs of the statements of this section appear in [8].
Denote by

Sn = {(T, S) ∈ L(H,K)× L(K,H) : T ∈ En, TS = I}.
This space has a rich geometrical structure by the action of GL(H) given by

W · (T, S) = (TW−1,WS), W ∈ GL(H).

In fact, for any fixed pair (T, S) ∈ Sn, the map τ : GL(H)→ Sn, τ(W ) = W ·(T, S)
defines a homogeneous reductive space with a connection given by the distribution
of horizontal spaces. Note that the map τ : Sn → En, τ(T, S) = T defines a fibre
bundle with affine fibres.
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Given a smooth curve γ : [0, 1]→ Sn such that γ(0) = (T, S), γ(t) = (a(t), b(t)),
the unique solution of the differential equation{ Γ̇ = ȧb− aḃ(1 − ab) Γ,

Γ(0) = I

satisfies that Γ(t) ∈ GL(H), Γ(t) · (T, S) = γ(t). Consider now a smooth curve
δ : [0, 1]→ En, and define

γ(t) = (δ(t), δ(t)†) = (δ(t), δ(t)∗[δ(t)δ(t)∗]−1 ).

Observe that γ(t) ∈ Sn ∀ t and γ(0) = (δ(0), δ(0)†). Then δ(t) = δ(0)Γ(t)−1.

Remark 2.19. In [2], R. Balan implicitly studies the following action of GL(H) over
E :

GL(H)× E → E (V, T ) 7→ V T.

This action is free: V1T = V2T only if V1 = V2. The orbit of T ∈ E under this
action is much smaller than the orbit under the action we considered. In fact, Balan
proves that T1 ∈ E belongs to the orbit of T if and only if R(T ∗1 T1) = R(T ∗T ).
However, under the action GL(`2) × E → E , (W,T ) 7→ TW−1, T1 ∈ E belongs to
the orbit of T if and only if T ∗1 T1 is congruent to T ∗T , in the sense that there exists
W ∈ GL(`2) such that W ∗(T ∗1 T1)W = T ∗T . Of course, this condition does not
imply that R(T ∗1 T1) = R(T ∗T ). The converse, however, is true. The relevant fact
about Balan’s orbits is that there is a natural metric defined on each orbit, and he
uses this metric to find, given a frame Ξ, its closest tight frame. We shall study
metrics in our orbits elsewhere.

Remark 2.20. Let CR+
n (H) denote the set of all positive (semidefinite) closed range

operators A on H such that dim kerA = n.
From some results obtained in [7], where the congruence orbits of any positive

operator are studied, it follows that the map

βn : En → CR+
n (H), βn(T ) = T ∗T

has continuous local cross sections for n ∈ N ∪ {0}. The result fails if n = ∞.
Analogous results hold for the maps µn : CR+

n (H) → CR+
n (H), µn(A) = A† and

θn : CR+
n (H) → L(H), θn(A) = P(kerA)⊥ . The fact about βn allows the study of

En as the total space of a fibre bundle over CR+
n (H). It should be mentioned that

the geometry of CR+
n (H) is well known [7], so that the fibration properties of βn

may be of great help in order to completely understand the geometry of En.

3. Frames

Consider a sequence Ξ = (ξn)n∈N in a Hilbert space H; Ξ is called a Bessel
sequence if there exists a positive number B such that

(3.1)
∞∑
n=1

|〈ξ, ξn〉|2 ≤ B‖ξ‖2 , ξ ∈ H.

Proposition 3.1. For a sequence Ξ = (ξn) in a Hilbert space H, the following are
equivalent:

(1) Ξ is a Bessel sequence;
(2) there is a bounded linear operator W : H → `2 such that

Wξ = (〈ξ, ξn〉)n∈N, ξ ∈ H;
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(3) there is a bounded linear operator T : `2 → K such that Ten = ξn, where
en denotes the n-th vector of the canonical orthonormal basis of `2.

The proof is straightforward. Observe that, if Ξ is a Bessel sequence, then
‖Wξ‖2 ≤ B1/2‖ξ‖H for all ξ ∈ H. In this case, T = W ∗. As a corollary, the set BH
of Bessel sequences in H is a C-vector space. Moreover, if we define

‖Ξ‖B = inf{B1/2 :
∑
|〈ξ, ξn〉|2 ≤ B‖ξ‖2, ξ ∈ H}

= sup{(
∑
|〈ξ, ξn〉|2)1/2 : ξ ∈ H, ‖ξ‖ ≤ 1}

= sup{‖
∑∞
n=1 anξn‖ : (an) ∈ `2, ‖(an)‖2 = 1},

then (BH, ‖ · ‖B) is a Banach space isometrically isomorphic to L(`2,H): the iso-
morphism maps a Bessel sequence Ξ = (ξn) into the operator TΞ ∈ L(`2,H) defined
by

TΞ((an)n∈N) =
∞∑
n=1

anξn, (an)n∈N ∈ `2;

the inverse isomorphism maps T ∈ L(`2,H) into ΞT = (Ten). Analogously, we have
a (conjugate-linear) isomorphism between BH and L(H, `2) given by BH 3 Ξ 7→WΞ,
where WΞ(ξ) = (〈ξ, ξn〉)n∈N, ξ ∈ H, i.e., WΞ = TΞ

∗.
A Bessel sequence Ξ = (ξn) is called a frame inH if there exist positive constants

A,B such that

(3.2) A‖ξ‖2 ≤
∑
|〈ξ, ξn〉|2 ≤ B‖ξ‖2, ξ ∈ H.

Observe that this condition together with equation (3.1) is equivalent to

A〈ξ, ξ〉 ≤ 〈TΞTΞ
∗ξ, ξ〉 ≤ B〈ξ, ξ〉, ξ ∈ H,

or, what is the same,
AIH ≤ TΞTΞ

∗ ≤ BIH.
Of course, this means that TΞ is an epimorphism from `2 onto H or, equivalently,
that WΞ = TΞ

∗ ∈ L(H, `2) is bounded from below. Thus the isomorphism Θ :
L(`2,H)→ BH, Θ(T ) = (Ten) maps the set of epimorphisms in L(`2,H) onto the
set FH of all frames in H. Observe that the positive invertible TΞTΞ

∗ ∈ L(H) is
usually called the frame operator of Ξ. TΞ is called the synthesis operator of Ξ,
and WΞ = TΞ

∗ is called the analysis operator of Ξ ([19], [4]).
A frame Ξ = (ξn) is called tight if there exists A > 0 such that∑

|〈ξ, ξn〉|2 = A‖ξ‖2 , ξ ∈ H.

This means that TΞTΞ
∗ = AIH, so that the set FoH of tight frames inH corresponds

(under the isomorphism Θ) with the set R+E0 of positive scalar multiples of co-
isometries from H into `2.

A frame Ξ = (ξn) is called exact if no proper subsequence of Ξ is a frame. It is
known ([20], [13]) that this is equivalent to (ξn) being a Riesz basis or, what is the
same, to TΞ (or WΞ) being invertible.

There is a natural action of GL(`2) over FH. In fact, given Ξ ∈ FH and V ∈
GL(`2), define V · Ξ = ((TΞ ◦ V −1)en). In terms of the matrix A = (anm), where
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anm = 〈V −1en, em〉, V · Ξ is defined as the (formal) product AΞ, i.e., V · Ξ = (ηn)
where

ηn =
∞∑
m=1

anmξm.

This action corresponds bijectively with that ofGL(`2) over E , so that the orbits are
the connected components of FH. The next result collects similar facts on F = FH
to those proved for E . The proof follows from the fact that Θ is an isomorphism.

Theorem 3.2. Let H be a (separable) Hilbert space.
(1) F is an open subset of BH, so that the connected components are arcwise

connected.
(2) Any connected component of FH has the form

Fn = {Ξ ∈ F : dim kerTΞ = n}
for n ∈ N ∪ {∞}. In particular, the set of Riesz basis elements of H is
arcwise connected.

(3) If Ξ = (ξn) ∈ Fn, then any other E = (ηn) ∈ Fn has the form E = V · Ξ
for some V ∈ GL(`2).

(4) For any Ξ ∈ Fn the map GL(`2) → Fn, defined by V 7→ V · Ξ, is a
homogeneous space with isotropy group GΞ = {V ∈ GL(`2) : V · Ξ = Ξ};
analogously, U(`2) → Fon, defined by U 7→ U · Ξ, is a homogeneous space
with isotropy group UΞ = {U ∈ U(`2) : U · Ξ = Ξ}.

(5) Any continuous (resp. differentiable) curve γ in Fn such that γ(0) = Ξ has
the form t 7→ Γ(t) · Ξ for some continuous (resp. differentiable) curve Γ
in GL(`2). Analogously, any curve γ in Fon with γ(0) = Ξ has the form
γ(t) = Γ(t) · Ξ where Γ is a curve in U(H).

(6) Fon is a deformation retract of Fn for all n.

Remark 3.3. Let Ξ be a frame in H. If Ξ ∈ Fn, Balan et al [3] say that Ξ has excess
n. Then by item 2 of the last theorem, two frames can be joined by a smooth curve
in F if and only if they have the same excess. Recall that a frame with finite excess
is what Holub [16] calls a near-Riesz basis.

A Bessel sequence Ξ is called a Riesz sequence if TΞ is bounded from below or,
equivalently, if WΞ is an epimorphism. In other words, if there exist A,B > 0 such
that

∀c ∈ `2, A‖c‖2 ≤ ‖
∑
n∈N

cnξn‖H ≤ B‖c‖2.

We shall denote byR = RH the space of Riesz sequences in H. As before we denote
by Rn = {Ξ ∈ R : dim kerWΞ = n}, n ∈ N ∪ {∞}. In the terminology of Balan et
al [3], the number n = dim kerWΞ is called the deficit of the sequence Ξ.

Using the (conjugate linear) isomorphism between BH and L(H, `2), which maps
R onto E(H, `2), we can make a similar analysis for Riesz sequences as we made
for frames. In this case the action of the group GL(H) on R is given by V · Ξ =
((V −1)∗ξn)n∈N for Ξ = (ξn)n∈N ∈ R.

As in the case of frames, one can get a classification of Riesz sequences by trans-
lating the classification of epimorphisms done in section 2. Thus, RH is an open
subset of BH, whose connected components are the sets Rn, n ∈ N∪{∞}, which are
also the orbits of the action of GL(H) on R. These orbits are homogeneous spaces
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of GL(H). The isotropy group of a fixed Ξ ∈ Rn is given by those V ∈ GL(H)
such that V ∗ acts as the identity on the closure of the subspace generated by Ξ.

Note that the subset of R associated to the co-isometries E0(H, `2) coincides
with the set of orthonormal systems in H. Then, for every fixed n ∈ N ∪ {∞}, the
set of orthonormal systems with deficit n is a deformation retract of the orbit Rn.

Remark 3.4. Another way to get the previous analysis forRH consists in translating
the geometry of E(H, `2) to the subset of L(`2,H) of those operators that are
bounded from below, using the diffeomorphismW 7→ W ∗. Then the Riesz sequences
can be classified by identifying them with their synthesis operators (instead of using
the analysis operators as we did before).

Remark 3.5. The separability hypothesis is not an essential one. In fact, all results
can be proven in the general sense, using minor changes. On the other hand, the
results of the paper can easily be generalized to the setting of frames in Hilbert
C*-modules.
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E-mail address: gcorach@fi.uba.ar
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