Domaine numérique du produit et de la bimultiplication $M_{2,A,B}$
HTML articles powered by AMS MathViewer
- by Mohamed Chraibi Kaadoud
- Proc. Amer. Math. Soc. 132 (2004), 2421-2428
- DOI: https://doi.org/10.1090/S0002-9939-04-07352-6
- Published electronically: March 3, 2004
- PDF | Request permission
Abstract:
In this paper, we present an extension of Bouldin’s result (1970) concerning the numerical range $W(AB)$ of the product of two operators $A$ and $B$ that are commuting and for which one of the set $W(A)$ or $W(B)$ consists of positive numbers. We also prove that if $A$ or $B$ is a subnormal operator on a separable Hilbert space, then \begin{equation*} \overline {W(M_{2,A,B})}=\overline {co\left [ W(A)W(B)\right ] }, \end{equation*} where $M_{2,A,B}$ is the operator bimultiplication and $co$ is the convex hull. Résumé. Dans ce travail, nous améliorons un résultat de Bouldin (1970) concernant la localisation de $W(AB),$ le domaine numérique du produit de deux opérateurs $A$ et $B$ sur un espace de Hilbert lorsque $A$ et $B$ commutent et $W(A)$ est constitué de réels strictement positifs. Dans le cas où $A$ ou $B$ est un opérateur sous normal sur un espace de Hilbert séparable, nous montrons que \begin{equation*} \overline {W(M_{2,A,B})}=\overline {co\left [ W(A)W(B)\right ] }, \end{equation*} où $M_{2,A,B}$ est l’opérateur produit ou bimultiplication et $co$ est l’enveloppe convexe.References
- T. Ando, Distance to the set of thin operators, preprint, 1970.
- Errett Bishop, Spectral theory for operators on a Banach space, Trans. Amer. Math. Soc. 86 (1957), 414–445. MR 100789, DOI 10.1090/S0002-9947-1957-0100789-4
- Richard Bouldin, The numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459–467. MR 270186, DOI 10.1016/0022-247X(70)90270-2
- Richard Bouldin, The numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459–467. MR 270186, DOI 10.1016/0022-247X(70)90270-2
- Mohamed Chraibi Kaadoud, Domaine numérique de l’opérateur produit $M_{2,A,B}$ et de la dérivation généralisée $\delta _{2,A,B}$, Extracta Math. 17 (2002), no. 1, 59–68 (French). MR 1914239
- M. K. Chraibi, Domaine numérique d’opérateurs élémentaires. Problèmes de rafle, thèse d’ état, Université Cadi Ayyad, Faculté des Sciences Semlalia. Marrakech. 2002. N$^{\circ }$ D’ordre 339.
- Lawrence A. Fialkow, Structural properties of elementary operators, Elementary operators and applications (Blaubeuren, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 55–113. MR 1183937
- C. K. Fong, Most normal operators are diagonal, Proc. Amer. Math. Soc. 99 (1987), no. 4, 671–672. MR 877037, DOI 10.1090/S0002-9939-1987-0877037-5
- Karl E. Gustafson and Duggirala K. M. Rao, Numerical range, Universitext, Springer-Verlag, New York, 1997. The field of values of linear operators and matrices. MR 1417493, DOI 10.1007/978-1-4613-8498-4
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- John A. R. Holbrook, On the power-bounded operators of Sz.-Nagy and Foiaş, Acta Sci. Math. (Szeged) 29 (1968), 299–310. MR 239453
- Chi-Kwong Li, $C$-numerical ranges and $C$-numerical radii, Linear and Multilinear Algebra 37 (1994), no. 1-3, 51–82. Special Issue: The numerical range and numerical radius. MR 1313758, DOI 10.1080/03081089408818312
- Gunter Lumer and Marvin Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32–41. MR 104167, DOI 10.1090/S0002-9939-1959-0104167-0
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 27, Springer-Verlag, Berlin-New York, 1970. Second printing. MR 0257800, DOI 10.1007/978-3-662-35155-0
Bibliographic Information
- Mohamed Chraibi Kaadoud
- Affiliation: Département des Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Maroc
- Email: chraibik@ucam.ac.ma
- Received by editor(s): June 19, 2002
- Received by editor(s) in revised form: May 16, 2003
- Published electronically: March 3, 2004
- Communicated by: Joseph A. Ball
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2421-2428
- MSC (2000): Primary 47A12
- DOI: https://doi.org/10.1090/S0002-9939-04-07352-6
- MathSciNet review: 2052420