A strong Lebesgue point property for Sobolev functions
HTML articles powered by AMS MathViewer
- by Visa Latvala
- Proc. Amer. Math. Soc. 132 (2004), 2331-2338
- DOI: https://doi.org/10.1090/S0002-9939-04-07358-7
- Published electronically: February 19, 2004
- PDF | Request permission
Abstract:
We show that first-order Sobolev functions fulfill a Wiener integral type Lebesgue point property outside a set of Sobolev capacity zero. Our condition is stronger than the standard Lebesgue point property, but the exceptional set is slightly larger.References
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441, DOI 10.1007/978-3-662-03282-4
- D. R. Adams and J. L. Lewis, Fine and quasiconnectedness in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 57–73. MR 781778, DOI 10.5802/aif.998
- David R. Adams and Norman G. Meyers, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J. 22 (1972/73), 169–197. MR 316724, DOI 10.1512/iumj.1972.22.22015
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Herbert Federer and William P. Ziemer, The Lebesgue set of a function whose distribution derivatives are $p$-th power summable, Indiana Univ. Math. J. 22 (1972/73), 139–158. MR 435361, DOI 10.1512/iumj.1972.22.22013
- Piotr Hajłasz and Juha Kinnunen, Hölder quasicontinuity of Sobolev functions on metric spaces, Rev. Mat. Iberoamericana 14 (1998), no. 3, 601–622. MR 1681586, DOI 10.4171/RMI/246
- Lars Inge Hedberg, Non-linear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299–319. MR 328088, DOI 10.1007/BF01181619
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- Juha Kinnunen and Nageswari Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401–423. MR 1856619, DOI 10.1007/s002290100193
- Tero Kilpeläinen and Jan Malý, Supersolutions to degenerate elliptic equation on quasi open sets, Comm. Partial Differential Equations 17 (1992), no. 3-4, 371–405. MR 1163430, DOI 10.1080/03605309208820847
- Tero Kilpeläinen and Jan Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), no. 1, 137–161. MR 1264000, DOI 10.1007/BF02392793
- Jan Malý, Hölder type quasicontinuity, Potential Anal. 2 (1993), no. 3, 249–254. MR 1245242, DOI 10.1007/BF01048508
- Norman G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157–166. MR 367235
- V. G. Maz′ja and V. P. Havin, A nonlinear potential theory, Uspehi Mat. Nauk 27 (1972), no. 6, 67–138. MR 0409858
- Jan MalĂ˝ and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997. MR 1461542, DOI 10.1090/surv/051
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Visa Latvala
- Affiliation: Department of Mathematics, University of Joensuu, P.O. Box 111, 80101 Joensuu, Finland
- Email: visa.latvala@joensuu.fi
- Received by editor(s): January 23, 2003
- Received by editor(s) in revised form: April 29, 2003
- Published electronically: February 19, 2004
- Communicated by: Juha M. Heinonen
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2331-2338
- MSC (2000): Primary 46E35; Secondary 31C15
- DOI: https://doi.org/10.1090/S0002-9939-04-07358-7
- MathSciNet review: 2052410