Zeros of functions with finite Dirichlet integral
HTML articles powered by AMS MathViewer
- by Stefan Richter, William T. Ross and Carl Sundberg
- Proc. Amer. Math. Soc. 132 (2004), 2361-2365
- DOI: https://doi.org/10.1090/S0002-9939-04-07361-7
- Published electronically: February 12, 2004
- PDF | Request permission
Abstract:
In this paper, we refine a result of Nagel, Rudin, and Shapiro (1982) concerning the zeros of holomorphic functions on the unit disk with finite Dirichlet integral.References
- Thomas Bagby, Quasi topologies and rational approximation, J. Functional Analysis 10 (1972), 259–268. MR 0355058, DOI 10.1016/0022-1236(72)90025-0
- Krzysztof Bogdan, On the zeros of functions with finite Dirichlet integral, Kodai Math. J. 19 (1996), no. 1, 7–16. MR 1374458, DOI 10.2996/kmj/1138043542
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Alexander Nagel, Walter Rudin, and Joel H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. (2) 116 (1982), no. 2, 331–360. MR 672838, DOI 10.2307/2007064
- H. S. Shapiro and A. L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217–229. MR 145082, DOI 10.1007/BF01162379
Bibliographic Information
- Stefan Richter
- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996
- MR Author ID: 215743
- Email: richter@math.utk.edu
- William T. Ross
- Affiliation: Department of Mathematics and Computer Science, University of Richmond, Richmond, Virginia 23173
- MR Author ID: 318145
- Email: wross@richmond.edu
- Carl Sundberg
- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996
- Email: sundberg@math.utk.edu
- Received by editor(s): October 22, 2002
- Received by editor(s) in revised form: May 6, 2003
- Published electronically: February 12, 2004
- Communicated by: Juha M. Heinonen
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2361-2365
- MSC (2000): Primary 30C15; Secondary 30C85
- DOI: https://doi.org/10.1090/S0002-9939-04-07361-7
- MathSciNet review: 2052414