On the discrete groups of Moonshine
HTML articles powered by AMS MathViewer
- by John Conway, John McKay and Abdellah Sebbar
- Proc. Amer. Math. Soc. 132 (2004), 2233-2240
- DOI: https://doi.org/10.1090/S0002-9939-04-07421-0
- Published electronically: March 25, 2004
- PDF | Request permission
Abstract:
We characterize the 171 discrete subgroups of $\mbox {PSL}_2(\mathbb {R})$ occurring in Monstrous Moonshine in terms of their group-theoretic properties alone.References
- M. Akbas and D. Singerman, The signature of the normalizer of $\Gamma _0(N)$, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 77–86. MR 1200251, DOI 10.1017/CBO9780511629259.009
- B. J. Birch and W. Kuyk (eds.), Modular functions of one variable. IV, Lecture Notes in Mathematics, Vol. 476, Springer-Verlag, Berlin-New York, 1975. MR 0376533
- Richard E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405–444. MR 1172696, DOI 10.1007/BF01232032
- Richard E. Borcherds, Automorphic forms on $\textrm {O}_{s+2,2}(\textbf {R})$ and infinite products, Invent. Math. 120 (1995), no. 1, 161–213. MR 1323986, DOI 10.1007/BF01241126
- J. H. Conway, Understanding groups like $\Gamma _0(N)$, Groups, difference sets, and the Monster (Columbus, OH, 1993) Ohio State Univ. Math. Res. Inst. Publ., vol. 4, de Gruyter, Berlin, 1996, pp. 327–343. MR 1400424
- J. H. Conway, The orbifold notation for surface groups, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 438–447. MR 1200280, DOI 10.1017/CBO9780511629259.038
- J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308–339. MR 554399, DOI 10.1112/blms/11.3.308
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
- Chongying Dong and Geoffrey Mason, An orbifold theory of genus zero associated to the sporadic group $M_{24}$, Comm. Math. Phys. 164 (1994), no. 1, 87–104. MR 1288154, DOI 10.1007/BF02108807
- C. Ferenbaugh, On the modular functions involved in “Monstrous Moonshine”, Ph.D. dissertation, Princeton University, 1992.
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- David Ford, John McKay, and Simon Norton, More on replicable functions, Comm. Algebra 22 (1994), no. 13, 5175–5193. MR 1291027, DOI 10.1080/00927879408825127
- R. Fricke, Die elliptische Funktionen und ihre Anwendungen, 2-ter Teil (Teubner, Leipzig, 1892).
- Robert L. Griess Jr., The friendly giant, Invent. Math. 69 (1982), no. 1, 1–102. MR 671653, DOI 10.1007/BF01389186
- Jeffrey A. Harvey and Gregory Moore, Algebras, BPS states, and strings, Nuclear Phys. B 463 (1996), no. 2-3, 315–368. MR 1393643, DOI 10.1016/0550-3213(95)00605-2
- Yi-Zhi Huang, Two-dimensional conformal geometry and vertex operator algebras, Progress in Mathematics, vol. 148, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1448404
- Rossen Ivanov and Michael Tuite, Rational generalised moonshine from abelian orbifoldings of the moonshine module, Nuclear Phys. B 635 (2002), no. 3, 435–472. MR 1915258, DOI 10.1016/S0550-3213(02)00318-8
- P. G. Kluit, On the normalizer of $\Gamma _{0}(N)$, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 601, Springer, Berlin, 1977, pp. 239–246. MR 0480340
- A. P. Ogg, Automorphismes des courbes modulaires, Séminaire Delange-Pisot, Poitou, (7), 1974.
- Michael P. Tuite, Monstrous Moonshine from orbifolds, Comm. Math. Phys. 146 (1992), no. 2, 277–309. MR 1165184, DOI 10.1007/BF02102629
- Michael P. Tuite, On the relationship between Monstrous Moonshine and the uniqueness of the Moonshine module, Comm. Math. Phys. 166 (1995), no. 3, 495–532. MR 1312433, DOI 10.1007/BF02099885
Bibliographic Information
- John Conway
- Affiliation: Department of Mathematics, Fine Hall, Princeton University, Washington Road, Princeton, New Jersey 08544-1000
- Email: conway@math.princeton.edu
- John McKay
- Affiliation: Department of Mathematics and CICMA, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada
- Email: mckay@cs.concordia.ca
- Abdellah Sebbar
- Affiliation: Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Email: sebbar@mathstat.uottawa.ca
- Received by editor(s): August 2, 2002
- Received by editor(s) in revised form: May 7, 2003
- Published electronically: March 25, 2004
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2233-2240
- MSC (2000): Primary 11F22, 11F03; Secondary 30F35, 20C34
- DOI: https://doi.org/10.1090/S0002-9939-04-07421-0
- MathSciNet review: 2052398