A geometrical version of Hardy’s inequality for $\stackrel {\circ }{\textrm {W}}{}^{1,p}(\Omega )$
HTML articles powered by AMS MathViewer
- by Jesper Tidblom
- Proc. Amer. Math. Soc. 132 (2004), 2265-2271
- DOI: https://doi.org/10.1090/S0002-9939-04-07526-4
- Published electronically: March 25, 2004
- PDF | Request permission
Abstract:
The aim of this article is to prove a Hardy-type inequality, concerning functions in $\stackrel {\circ }{\textrm {W}}{\!}^{1,p}(\Omega )$ for some domain $\Omega \subset R^n$, involving the volume of $\Omega$ and the distance to the boundary of $\Omega$. The inequality is a generalization of a recently proved inequality by M. Hoffmann–Ostenhof, T. Hoffmann–Ostenhof and A. Laptev (2002), which dealt with the special case $p=2$.References
- G. Barbatis, S. Filippas, and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants, preprint, December 2000.
- Haïm Brezis and Moshe Marcus, Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217–237 (1998). Dedicated to Ennio De Giorgi. MR 1655516
- E. B. Davies, A review of Hardy inequalities, The Maz′ya anniversary collection, Vol. 2 (Rostock, 1998) Oper. Theory Adv. Appl., vol. 110, Birkhäuser, Basel, 1999, pp. 55–67. MR 1747888
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990. MR 1103113
- E. B. Davies, The Hardy constant, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 184, 417–431. MR 1366614, DOI 10.1093/qmath/46.4.417
- E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. MR 1349825, DOI 10.1017/CBO9780511623721
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- G. Hardy, Note on a theorem of Hilbert, Math. Zeitschrift (6) (1920), pp. 314–317.
- M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev, A geometrical version of Hardy’s inequality, J. Funct. Anal. 189 (2002), no. 2, 539–548. MR 1892180, DOI 10.1006/jfan.2001.3859
- Elliott H. Lieb and Michael Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. MR 1415616, DOI 10.1090/gsm/014
- Tanya Matskewich and Pavel E. Sobolevskii, The best possible constant in generalized Hardy’s inequality for convex domain in $\textbf {R}^n$, Nonlinear Anal. 28 (1997), no. 9, 1601–1610. MR 1431208, DOI 10.1016/S0362-546X(96)00004-1
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR 1069756
Bibliographic Information
- Jesper Tidblom
- Affiliation: Department of Mathematics, University of Stockholm, 106 91 Stockholm, Sweden
- Email: jespert@math.su.se
- Received by editor(s): January 28, 2002
- Published electronically: March 25, 2004
- Communicated by: Jonathan M. Borwein
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2265-2271
- MSC (2000): Primary 35P99; Secondary 35P20, 47A75, 47B25
- DOI: https://doi.org/10.1090/S0002-9939-04-07526-4
- MathSciNet review: 2052402