“Lebesgue measure” on $\mathbb {R}^{\infty }$, II
HTML articles powered by AMS MathViewer
- by Richard L. Baker
- Proc. Amer. Math. Soc. 132 (2004), 2577-2591
- DOI: https://doi.org/10.1090/S0002-9939-04-07372-1
- Published electronically: April 21, 2004
- PDF | Request permission
Abstract:
Let $\mathbb {R}$ be the set of real numbers, and define $\mathbb {R}^{\infty }=\prod \limits ^{\infty }_{i=1}\mathbb {R}$. We construct a complete measure space $(\mathbb {R}^{\infty },\mathcal {L},\lambda )$ where the $\sigma$-algebra $\mathcal {L}$ contains the Borel subsets of $\mathbb {R}^{\infty }$, and $\lambda$ is a translation-invariant measure such that for any measurable rectangle $R=\prod \limits ^{\infty }_{i=1}R_{i}$, if $0\le \prod \limits ^{\infty }_{i=1}m(R_{i})<+\infty$, then $\lambda (R)=\prod \limits ^{\infty }_{i=1}m(R_{i})$, where $m$ is Lebesgue measure on $\mathbb {R}$. The measure $\lambda$ is not $\sigma$-finite. We prove three Fubini theorems, namely, the Fubini theorem, the mean Fubini-Jensen theorem, and the pointwise Fubini-Jensen theorem. Finally, as an application of the measure $\lambda$, we construct, via selfadjoint operators on $L_{2}(\mathbb {R}^{\infty },\mathcal {L},\lambda )$, a “Schrödinger model” of the canonical commutation relations: $[P_{j},P_{k}]=[Q_{j},Q_{k}]=0$, $[P_{j},Q_{k}]=i\delta _{jk}$, $1\le j,k<+\infty$.References
- Richard Baker, “Lebesgue measure” on $\textbf {R}^\infty$, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1023–1029. MR 1062827, DOI 10.1090/S0002-9939-1991-1062827-X
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- E. O. Elliott and A. P. Morse, General product measures, Trans. Amer. Math. Soc. 110 (1964), 245–283. MR 158957, DOI 10.1090/S0002-9947-1964-0158957-5
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- Eduard Prugovečki, Quantum mechanics in Hilbert space, 2nd ed., Pure and Applied Mathematics, vol. 92, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 630533
- Gunter Ritter and Edwin Hewitt, Elliott-Morse measures and Kakutani’s dichotomy theorem, Math. Z. 211 (1992), no. 2, 247–263. MR 1184330, DOI 10.1007/BF02571429
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
Bibliographic Information
- Richard L. Baker
- Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
- Email: baker@math.uiowa.edu
- Received by editor(s): August 16, 1994
- Received by editor(s) in revised form: March 21, 2003
- Published electronically: April 21, 2004
- Communicated by: David R. Larson
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2577-2591
- MSC (2000): Primary 28A35, 28C10, 81D05
- DOI: https://doi.org/10.1090/S0002-9939-04-07372-1
- MathSciNet review: 2054783