Knot signature functions are independent
HTML articles powered by AMS MathViewer
- by Jae Choon Cha and Charles Livingston
- Proc. Amer. Math. Soc. 132 (2004), 2809-2816
- DOI: https://doi.org/10.1090/S0002-9939-04-07378-2
- Published electronically: April 21, 2004
- PDF | Request permission
Abstract:
A Seifert matrix is a square integral matrix $V$ satisfying \begin{equation*}\det (V - V^T) =\pm 1. \end{equation*} To such a matrix and unit complex number $\omega$ there corresponds a signature, \begin{equation*}\sigma _\omega (V) = \mbox {sign}( (1 - \omega )V + (1 - \bar {\omega })V^T). \end{equation*} Let $S$ denote the set of unit complex numbers with positive imaginary part. We show that $\{\sigma _\omega \}_ { \omega \in S }$ is linearly independent, viewed as a set of functions on the set of all Seifert matrices. If $V$ is metabolic, then $\sigma _\omega (V) = 0$ unless $\omega$ is a root of the Alexander polynomial, $\Delta _V(t) = \det (V - tV^T)$. Let $A$ denote the set of all unit roots of all Alexander polynomials with positive imaginary part. We show that $\{\sigma _\omega \}_ { \omega \in A }$ is linearly independent when viewed as a set of functions on the set of all metabolic Seifert matrices. To each knot $K \subset S^3$ one can associate a Seifert matrix $V_K$, and $\sigma _\omega (V_K)$ induces a knot invariant. Topological applications of our results include a proof that the set of functions $\{\sigma _\omega \}_ { \omega \in S }$ is linearly independent on the set of all knots and that the set of two–sided averaged signature functions, $\{\sigma ^*_\omega \}_ { \omega \in S }$, forms a linearly independent set of homomorphisms on the knot concordance group. Also, if $\nu \in S$ is the root of some Alexander polynomial, then there is a slice knot $K$ whose signature function $\sigma _\omega (K)$ is nontrivial only at $\omega = \nu$ and $\omega = \overline {\nu }$. We demonstrate that the results extend to the higher-dimensional setting.References
- Lucien Guillou and Alexis Marin (eds.), À la recherche de la topologie perdue, Progress in Mathematics, vol. 62, Birkhäuser Boston, Inc., Boston, MA, 1986 (French). I. Du côté de chez Rohlin. II. Le côté de Casson. [I. Rokhlin’s way. II. Casson’s way]. MR 900243
- A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 39–53. MR 520521
- T. Cochran, K. Orr, and P. Teichner, Knot concordance, Whitney towers and $L^2$ signatures, Annals of Math. (2) 157 (2003), 433–519.
- Patrick M. Gilmer, Slice knots in $S^{3}$, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 135, 305–322. MR 711523, DOI 10.1093/qmath/34.3.305
- Patrick Gilmer, Classical knot and link concordance, Comment. Math. Helv. 68 (1993), no. 1, 1–19. MR 1201199, DOI 10.1007/BF02565807
- T. Kim, Obstructions to slicing and doubly slicing knots, Thesis, Indiana University, May 2003.
- J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 246314, DOI 10.1007/BF02564525
- J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98–110; addendum, ibid. 8 (1969), 355. MR 253348, DOI 10.1007/BF01404613
- J. P. Levine, Metabolic and hyperbolic forms from knot theory, J. Pure Appl. Algebra 58 (1989), no. 3, 251–260. MR 1004605, DOI 10.1016/0022-4049(89)90040-6
- H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1934), 571–592.
- Neal W. Stoltzfus, Unraveling the integral knot concordance group, Mem. Amer. Math. Soc. 12 (1977), no. 192, iv+91. MR 467764, DOI 10.1090/memo/0192
- D. W. Sumners, Invertible knot cobordisms, Comment. Math. Helv. 46 (1971), 240–256. MR 290351, DOI 10.1007/BF02566842
- A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251–264. MR 248854, DOI 10.1017/s0305004100044947
Bibliographic Information
- Jae Choon Cha
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- Address at time of publication: Information and Communications University, Daejeon 305-714, Republic of Korea
- Email: jccha@indiana.edu, jccha@icu.ac.kr
- Charles Livingston
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 193092
- Email: livingst@indiana.edu
- Received by editor(s): January 29, 2003
- Received by editor(s) in revised form: June 12, 2003
- Published electronically: April 21, 2004
- Communicated by: Ronald A. Fintushel
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2809-2816
- MSC (2000): Primary 57M25; Secondary 11E39
- DOI: https://doi.org/10.1090/S0002-9939-04-07378-2
- MathSciNet review: 2054808