THE NUMBER OF HALL π-SUBGROUPS
OF A π-SEPARABLE GROUP

ALEXANDRE TURULL

(Communicated by Jonathan I. Hall)

Abstract. We observe a simple formula to compute the number $\nu_\pi(G)$ of Hall π-subgroups of a π-separable finite group G in terms of only the action of a fixed Hall π-subgroup of G on a set of normal π'-sections of G. As a consequence, we obtain that $\nu_\pi(K)$ divides $\nu_\pi(G)$ whenever K is a subgroup of a finite π-separable group G. This generalizes a recent result of Navarro. In addition, our method gives an alternative proof of Navarro’s result.

1. Introduction

Let G be a finite group, and let π be a set of primes. We denote by $\nu_\pi(G)$ the number of Hall π-subgroups of G. In the case when G is π-separable, we know that $\nu_\pi(G) > 0$, and $\nu_\pi(G) = [G : N_G(H)]$, where H is any Hall π-subgroup of G. This formula involves the calculation of a normalizer, and it does not immediately allow us to compare $\nu_\pi(G)$ to $\nu_\pi(K)$ for a subgroup K of G. We propose the following formula, which uses only the calculation of some centralizers, and provides an obvious way to relate $\nu_\pi(G)$ and $\nu_\pi(K)$. It appears not to have been explicitly observed before.

Theorem 1.1. Let π be a set of primes, and let G be a finite π-separable group. Let H be a Hall π-subgroup of G, and let

$$1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_\ell = G$$

be a sequence of normal subgroups of G such that N_i/N_{i-1} is either a π-group or a π'-group for $i = 1, \ldots, \ell$. Let \mathcal{F} be the set of N_i/N_{i-1} that are π'-groups. Then,

$$\nu_\pi(G) = \prod_{F \in \mathcal{F}} [F : C_F(H)].$$

As a consequence, we obtain the following corollary, which is a generalization of the main result of Navarro [1]. Our proof of the corollary is based on our theorem, and provides an alternate proof of Navarro’s result.

Corollary 1.2. Let π be a set of primes, let G be a finite π-separable group, and let K be a subgroup of G. Then $\nu_\pi(K)$ divides $\nu_\pi(G)$.
2. Proofs

Proof of Theorem 1.1 Assume the theorem is false. Among all counterexamples, choose one with \(\ell \) as small as possible. Since the result holds for \(\ell = 0 \), and it is well known if \(\ell \leq 2 \), we have \(\ell > 2 \). Set \(N = N_1 \). Let \(\mathcal{H} \) be the set of Hall \(\pi \)-subgroups of \(G \). Define an equivalence relation on \(\mathcal{H} \) by, for \(H_1, H_2 \in \mathcal{H} \), \(H_1 \sim H_2 \) if and only if \(H_1 N = H_2 N \). The equivalence classes are in one-to-one correspondence with the groups \(H_1 N / N \), that is, the Hall \(\pi \)-subgroups of \(G / N \). Hence, the number of equivalence classes in \(\mathcal{H} \) is exactly \(\nu_\pi(G / N) \). Since the elements of \(\mathcal{H} \) are all conjugate in \(G \), and \(N \) is a normal subgroup of \(G \), the groups \(H_1 N \) for \(H_1 \in \mathcal{H} \) are all isomorphic to \(H N \). In particular, \(\nu_\pi(H_1 N) = \nu_\pi(HN) \) does not depend on \(H_1 \in \mathcal{H} \). It follows that \[
\nu_\pi(H) = |\mathcal{H}| = \nu_\pi(G / N) \nu_\pi(HN).
\]

By our choice of \(\ell \), the theorem holds for both \(G / N \) and \(HN \), and this implies that the theorem holds for \(G \). This contradiction completes the proof of the theorem. \(\square \)

The following lemma appears in slightly different form in [1]. We include a proof for completeness.

Lemma 2.1. Suppose \(H \) is a finite group, acting on the finite group \(F \), and assume that \(|H| \) and \(|F| \) are relatively prime. Suppose that \(K \) is an \(H \)-invariant subgroup of \(F \). Then \([K : C_K(H)] \) divides \(|F : C_F(H)| \).

Proof. Assume the lemma is false, and choose a counterexample with \(|F| \) as small as possible, and among all such, with \(|F : K| \) as small as possible. Since \(|F| \) and \(|H| \) are relatively prime, for each prime \(p \), the \(H \)-invariant Sylow \(p \)-subgroups of \(F \) (respectively of \(K \)) are the maximal \(H \)-invariant \(p \)-subgroups of \(F \) (respectively of \(K \)), and they are conjugate by elements of \(C_F(H) \) (respectively by elements of \(C_K(H) \)). Hence, for each prime \(p \), we may take some \(H \)-invariant Sylow \(p \)-subgroup \(P \) of \(F \) that contains an \(H \)-invariant Sylow \(p \)-subgroup of \(K \). This implies that \(P \) also contains a Sylow \(p \)-subgroup of \(C_F(H) \), and a Sylow \(p \)-subgroup of \(C_K(H) \). Hence, \(P, C_P(P) \), \(P \cap K \) and \(K \cap C_P(H) \) are respectively Sylow \(p \)-subgroups of \(F, C_F(H) \), \(K \) and \(C_K(H) \). It follows that the \(p \)-part of \([K : C_K(H)] \) is \([P \cap K : P \cap C_K(H)] \), and the \(p \)-part of \([F : C_F(H)] \) is \([P : P \cap C_F(H)] \). Hence, the minimality of our counterexample implies that \(F \) is a \(p \)-group for some prime \(p \). The minimality of \([F : K] \) in our counterexample implies that \(K \) is maximal among the \(H \)-invariant subgroups of \(F \). Let \(\Phi \) be the Frattini subgroup of \(F \). Since \(K \) is a proper subgroup, \(K \Phi \) is a proper \(H \)-invariant subgroup of \(F \), and it follows that \(\Phi \subseteq K \). Hence, \(K \) is a normal subgroup of \(F \). It follows that \(H \) acts on the group \(F / K \) and that \(C_F(H) / C_K(H) \) is isomorphic to the centralizer of the action of \(H \) on \(F / K \). This implies that \([C_F(H) : C_K(H)] \) divides \(|F : K| \). Hence the conclusion of the lemma holds. This final contradiction completes the proof of the lemma. \(\square \)

Proof of Corollary 1.2 Let \(H \) be a Hall \(\pi \)-subgroup of \(G \) that contains a Hall \(\pi \)-subgroup of \(K \). Hence, \(K \cap H \) is a Hall \(\pi \)-subgroup of \(K \). Let \[
1 = N_0 \lhd N_1 \lhd \cdots \lhd N_\ell = G
\]
be a sequence of normal subgroups of \(G \) such that \(N_i / N_{i-1} \) is either a \(\pi \)-group or a \(\pi' \)-group for \(i = 1, \ldots, \ell \). Let \(\mathcal{F} \) be the set of \(N_i / N_{i-1} \) that are \(\pi' \)-groups. Then,
by Theorem 1.1, we have
\[(2.1) \quad \nu_\pi(G) = \prod_{F \in \mathcal{F}} [F : C_F(H)].\]

Furthermore, \(\nu_\pi(K)\) can be computed in a similar way by considering the action of \(H \cap K\) on the appropriate quotients of the sequence of normal subgroups of \(K\),
\[1 = N_0 \cap K \triangleleft N_1 \cap K \triangleleft \cdots \triangleleft N_t \cap K = K.\]

Notice that \((N_i \cap K)/(N_{i-1} \cap K)\) is \((H \cap K)\)-isomorphic to \((N_i \cap K)/N_{i-1}/N_{i-1}\), an \((H \cap K)\)-invariant subgroup of \(N_i/N_{i-1}\). For each \(F \in \mathcal{F}\), we set \(K(F)\) to be \((N_i \cap K)/N_{i-1}/N_{i-1}\). Then we have
\[\nu_\pi(K) = \prod_{F \in \mathcal{F}} [K(F) : C_{K(F)}(H \cap K)].\]

It then follows from Lemma 2.1 that \(\nu_\pi(K)\) divides
\[\prod_{F \in \mathcal{F}} [F : C_F(H \cap K)].\]

Since this clearly divides our expression (2.1) for \(\nu_\pi(G)\) above, the corollary follows. \(\square\)

REFERENCES

Department of Mathematics, University of Florida, Gainesville, Florida 32611-8105
E-mail address: turull@math.ufl.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use