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Abstract. Let f be a Teichmüller self-mapping of the unit disk ∆ corre-
sponding to a holomorphic quadratic differential ϕ. If ϕ satisfies the growth
condition A(r, ϕ) =

∫∫
|z|<r |ϕ|dxdy = O((1 − r)−s) (as r → 1), for any given

s > 0, then f is extremal, and for any given a ∈ (0, 1), there exists a subse-
quence {nk} of N such that{ ϕ(a1/2nk z)∫∫

∆
|ϕ(a1/2nk z)|dxdy

}
is a Hamilton sequence. In addition, it is shown that there exists ϕ with
bounded Bers norm such that the corresponding Teichmüller mapping is not
extremal, which gives a negative answer to a conjecture by Huang in 1995.

1. Introduction

Let ∆ be the unit disk {|z| < 1} in the complex plane C. Suppose g is a qua-
siconformal self-mapping of ∆. We denote by Q(g) the class of all quasiconformal
self-mappings of ∆ that agree with g on the boundary ∂∆. A quasiconformal
mapping f0 ∈ Q(g) is said to be an extremal mapping for the boundary values
corresponding to h = g|∂∆ if it minimizes the maximal dilatations of Q(g), i.e.,

K[f0] = inf{K[f ] : f ∈ Q(g)},

where K[f ] is the maximal dilatation of f .
A quasiconformal mapping f(z) of ∆ is called a Teichmüller mapping if f has

the complex dilatation of the form

(1.1) µf (z) =
fz̄
fz

= k
ϕ(z)
|ϕ(z)| (0 < k < 1),

where ϕ 6≡ 0 is a holomorphic function in ∆ and k is a constant. It is of interest to
know whether f is extremal or, in particular, uniquely extremal among Q(f).

Let B(∆) = {φ : holomorphic in ∆ with the norm ‖φ‖ =
∫∫

∆
|φ(z)|dxdy <

∞}. A necessary and sufficient condition that f is extremal is that [7] there exists
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a so-called Hamilton sequence, namely, a sequence {φn ∈ B(∆) : ‖φn‖ = 1}, such
that

(1.2) lim
n→∞

∫∫
∆

k
ϕ(z)
|ϕ(z)|φn(z)dxdy = k.

For the convenience of subsequent discussion, we define

m(r, ϕ) :=
1

2π

∫ 2π

0

|ϕ(reiθ)|dθ

for any holomorphic function ϕ in ∆.
In this paper, we pay more attention to the problem: when does µf of a Teich-

müller mapping f have a Hamilton sequence such as {ϕ(Rnz)/‖ϕ(Rnz)‖}, Rn ∈
(0, 1), limn→∞Rn = 1, and hence f is extremal?

The problem has been investigated by many authors including Reich and Strebel
[7], Hayman and Reich [1], Reich [6], Huang [2], Wu and Lai [8], and Yao [10].

For example, Reich and Strebel [7] proved

Theorem A. If ϕ(z) satisfies the growth condition

(1.3) m(r, ϕ) = O(
1

1 − r ), r → 1,

then the putative sequence ϕ(Rz)/‖ϕ(Rz)‖, R ↑ 1 is a Hamilton sequence of µf
and hence f is extremal. Moreover, the extremality of f is no longer implied if
O((1 − r)−1) is replaced by O((1 − r)−s), for any s > 1.

Furthermore, Hayman and Reich [1] proved that f is also uniquely extremal if
ϕ(z) satisfies the growth condition (1.3).

Up to the present, the best growth condition for extremality, due to Wu and
Lai [8], is as follows.

Theorem B. Suppose ϕ(z) satisfies the following growth condition:

(1.4) m(r, ϕ) = o(
1

(1 − r)s ), r → 1 for any given s > 1.

Then there exists a sequence {Rn}, 0 < Rn < 1, limn→∞Rn = 1, such that
{ ϕ(Rnz)
‖ϕ(Rnz)‖} is a Hamilton sequence, and hence f is extremal.

In [3], Lai and Wu conjectured that (1.4) is the best possible growth condition
for the extremality. But our Theorem 1 below says that their conjecture is not true
in the precise sense.

Theorem 1. Set ∆r = {z ∈ ∆ : |z| < r < 1},

A(r, ϕ) =
∫∫

∆r

|ϕ(z)|dxdy =
∫ r

0

tdt

∫ 2π

0

|ϕ(teiθ)|dθ.

Suppose ϕ satisfies the growth condition:

(1.5) A(r, ϕ) = O(
1

(1 − r)s ), r → 1 for any given s > 0.

Then for any given a ∈ (0, 1), there exists a subsequence {nk} of N such that

{ ϕ(a1/2nk z)

‖ϕ(a1/2nk z)‖} is a Hamilton sequence of µf and hence f is extremal.
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It is clear that (1.4) implies (1.5), but the converse is not true, i.e., (1.5)6⇒ (1.4).
Let BQD(∆) denote the Banach space consisting of all ϕ holomorphic in ∆ with

the Bers norm

(1.6) ‖ϕ‖∆ = sup
z∈∆
|ρ−1(z)ϕ(z)| <∞,

where ρ(z)|dz|2 = 4|dz|2
(1−|z|2)2 is the Poincaré metric on ∆.

In [2], Huang posed the following conjecture.

Extremal Conjecture. If ϕ belongs to BQD(∆), then every Teichmüller mapping
corresponding to ϕ is extremal.

As far as we know at present, any ϕ belonging to BQD(∆) corresponds to an
extremal Teichmüller mapping. There are even ϕ with unbounded Bers norms
corresponding to extremal Teichmüller mappings (see an example in Section 2). It
seems that the conjecture is true. However, our Theorem 2 gives a negative answer
to it.

Theorem 2. Let Γ be the covering transformation group of a hyperbolic finite type
Riemann surface. Then for any ϕ in BQD(∆,Γ)\{0}, the Teichmüller mapping
corresponding to ϕ is not extremal, where BQD(∆,Γ) = {ϕ ∈ BQD(∆) : ϕ(z) =
ϕ(γ(z))γ′2(z), for all γ ∈ Γ}.

2. Proof of Theorem 1

Theorem 1 is an immediate corollary of the following theorem:

Theorem 3. Suppose there exists some a ∈ (0, 1) such that

(2.1) A(
1 + an

2
, ϕ) = O((1 − an)−s), as n→∞, for any given s > 0,

where an = a1/2n. Then there exists a subsequence {nk} of N such that {ϕ(ankz)/
‖ϕ(ankz)‖} is a Hamilton sequence and hence f is extremal.

Theorem 3 indicates that a discrete growth condition (2.1) of ϕ is sufficient to
induce f extremal. Meanwhile, it also makes clear that a best possible growth
condition on ϕ for extremality can hardly be given.

The main idea of the proof of Theorem 3 comes from [8]. We need some prepa-
ration before proving it.

For 1
2 < t2 < t < 1, we write

(2.2)

∫∫
∆(ϕ(z)/|ϕ(z)|)ϕ(tz)dxdy∫∫

∆
|ϕ(tz)| = t2 + t2

β(t) + γ(t)
α(t)

,

where

α(t) = A(t, ϕ), β(t) =
∫∫

t<|z|<1

ϕ(z)
|ϕ(z)|ϕ(tz)dxdy,

γ(t) =
∫∫

∆t

ϕ(z)
|ϕ(z)| [ϕ(tz)− ϕ(z)]dxdy.



2650 GUOWU YAO

Claim 1. m(%, ϕ′) = 1
2π

∫ 2π

0 |ϕ′(%eiθ)|dθ ≤
R

R2−%2m(ϕ,R), where R = 1+%
2 .

Actually, by the Cauchy formula

ϕ′(%eiθ) =
1

2πi

∫
|z|=R

ϕ(z)
(z − %eiθ)2

dz =
R

2π

∫ 2π

0

ϕ(Rei(t+θ))ei(t−θ)

(Reit − %)2
dt,

we obtain

m(%, ϕ′) ≤ 1
2π

∫ 2π

0

Rm(R,ϕ)
R2 − 2R% cos t+ %2

dt =
Rm(R,ϕ)
R2 − %2

.(2.3)

Claim 2. Set ζ(t) =
∫ t

1
2
m(r, ϕ)dr, η(t) =

∫ 1+t
2

1
2

1+t−2R
1−R m(R,ϕ)dR, ε(t) = η(t) −

η(t2). Then we have

α(t) ≥ πζ(t),(2.4)

|β(t)| ≤ 4π[ζ(t) − ζ(t2)],(2.5)

|γ(t)| ≤ 4πε(t).(2.6)

Inequality (2.4) is obvious. Since |β(t)| ≤ 2π
t2

∫ t
t2 rm(r, ϕ)dr, we get (2.5). Using

Claim 1 and changing the order of integration, we find

|γ(t)| ≤
∫∫

∆t

|ϕ(tz)− ϕ(z)|dxdy

≤
∫ t

0

rdr

∫ 2π

0

dθ

∫ r

tr

|ϕ′(%eiθ)|d% ≤ 2πt
∫ t

0

dr

∫ r

tr

R

R2 − %2
m(R,ϕ)d%

≤ 4π
∫ t

0

dr

∫ 1+r
2

1+tr
2

R

(3R− 1)(1−R)
m(R,ϕ)dR ≤ 4π

∫ t

0

dr

∫ 1+r
2

1+tr
2

m(R,ϕ)
1−R dR

= 4π
∫ t

0

dr

∫ 1+r
2

1
2

m(R,ϕ)
1−R dR − 4π

∫ t

0

dr

∫ 1+tr
2

1
2

m(R,ϕ)
1− R dR

= 4π
∫ 1+t

2

1
2

1 + t− 2R
1−R m(R,ϕ)dR− 4π

∫ 1+t2
2

1
2

1 + t2 − 2R
t(1−R)

m(R,ϕ)dR

≤ 4π[η(t)− η(t2)] = 4πε(t).

(2.7)

The second equality in (2.7) comes from changing the order of the first two integrals.

Claim 3. Suppose (2.1) holds. Then there exists a subsequence {nk} of N such that

(2.8) lim
k→∞

η(ank)
η(a2

nk)
= 1.

In fact, it is sufficient to show that limn→∞
η(an)
η(a2

n) = 1 holds. Otherwise, there
exists some constant c > 1 such that η(an) > cη(a2

n), for all n ∈ N. Then we have
η(an) > cnη(a), n ∈ N. By virtue of limn→∞ an = 1, it is obvious that

(2.9) η(an) > cnη(a) = η(a)(
log a

log an
)log2 c ∼ c̃ (

1
1− an

)log2 c, n→∞,
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where c̃ = η(a)(log 1
a )log2 c. However, (2.1) gives

η(an) ≤ 2an
∫ 1+an

2

1
2

m(r, ϕ)dr ≤ 4
∫ 1+an

2

1
2

rm(r, ϕ)dr

=
2
π

[A(
1 + an

2
, ϕ)−A(

1
2
, ϕ)] ≤ 2

π
A(

1 + an
2

, ϕ)

= O(
1

(1 − an)s
), n→∞, for any given s > 0.

This contradicts (2.9), proving our claim.

Claim 4. Suppose {ank} is obtained from Claim 3. Let bk = ank . Then

(2.10) lim
k→∞

ε(bk)

ζ(1+b2k
2 )

= 0

and

(2.11) lim
k→∞

ζ(b2k)

ζ(1+b2k
2 )

= 1.

Since η(b2k) ≤ 2b2k
∫ 1+b2k

2
1
2

m(r, ϕ)dr = 2b2kζ(
1+b2k

2 ), we get

ε(bk)

ζ(1+b2k
2 )

=
η(b2k)

ζ(1 + b2k/2)
[
η(bk)
η(b2k)

− 1] ≤ 2b2k[
η(bk)
η(b2k)

− 1].

By (2.8), (2.10) is obtained. Notice that

t

1 + t
[ζ(

1 + t2

2
)− ζ(t2)] =

t

1 + t

∫ 1+t2
2

t2
m(r, ϕ)dr

≤
∫ 1+t2

2

t2

t(1− t)
1− r m(r, ϕ)dr ≤

∫ 1+t2
2

1
2

t(1− t)
1− r m(r, ϕ)dr

=
∫ 1+t2

2

1
2

1 + t− 2r
1− r m(r, ϕ)dr −

∫ 1+t2
2

1
2

1 + t2 − 2r
1− r m(r, ϕ)dr

≤
∫ 1+t

2

1
2

1 + t− 2r
1− r m(r, ϕ)dr −

∫ 1+t2
2

1
2

1 + t2 − 2r
1− r m(r, ϕ)dr

= ε(t).

Set t = bk. By virtue of (2.10), we get (2.11).

Now, we complete the proof of Theorem 3. By Claim 2, it suffices to show that

(2.12) lim
k→∞

ζ(bk)− ζ(b2k)
ζ(bk)

= 0

and

(2.13) lim
k→∞

ε(bk)
ζ(bk)

= 0.
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In view of Claim 4, they can be deduced from

ζ(bk)− ζ(b2k)
ζ(bk)

≤
ζ(1+b2k

2 )− ζ(b2k)

ζ(1+b2k
2 )

= 1− ζ(b2k)

ζ(1+b2k
2 )

and
ε(bk)
ζ(bk)

≤ ε(bk)

ζ(1+b2k
2 )
·
ζ(1+b2k

2 )
ζ(b2k)

.

Thus, Theorem 3 follows.
In particular, if A(r, ϕ) = O(logq 1

1−r ) as r → 1 for some q > 0, then ϕ(z) is
associated with extremal Teichmüller mappings.

Example. Let ϕ(z) = logq(1−z)
(1−z)2 , q > 0. The function ϕ corresponds to extremal

Teichmüller mappings since

A(r, ϕ) =
∫ r

0

tdt

∫ 2π

0

|ϕ(teiθ)|dθ

=
∫ r

0

tdt

∫ 2π

0

| log 1
1−teiθ |

q

|1− teiθ|2 dθ ≤ 2π logq+1 1
1− r

= o(
1

(1 − r)s ), r → 1, for any given s > 0.

Here, we have chosen a suitable univalent branch for ϕ in ∆. Obviously, the Bers
norm ‖ϕ‖∆ of ϕ is infinite, i.e., ϕ 6∈ BQD(∆).

Remark. Note that ε(t) = η(t)−η(t2) ≤ η(t)−η(tp) for p ≥ 2. The same reasoning
allows us to take an = a1/pn in Theorem 3. So, the Hamilton sequence in Theorem
1 can be replaced by {ϕ(a1/pnk z)/‖ϕ(a1/pnk z)‖} (p ≥ 2).

Finally, we end this section with the following problem.1

Problem. Let ϕ be holomorphic in ∆. If ϕ corresponds to an extremal Teichmüller
mapping f , can we say that µf has a Hamilton sequence such as {ϕ(tnz)/‖ϕ(tnz)‖ :
limn→∞ tn = 1, tn ∈ (0, 1)}?

3. Proof of Theorem 2

A Riemann surface M is said to be of finite analytic type (g, n) if and only if M
is obtained from a closed Riemann surface of finite genus g by deleting n points,
n ∈ N. A surface of finite analytic type is hyperbolic if and only if the inequality

3g − 3 + n > 0

holds.
First, we state a result by Mcmullen in [5]:

Theorem C. Let f : X → X ′ be a Teichmüller mapping between Riemann surfaces
of hyperbolic finite type. Then the mapping f̃ : ∆→ ∆ obtained by lifting f to the
universal covers of X and X ′ is not extremal among quasiconformal mappings with
the same boundary values (unless f is conformal).

1Added in proof. The problem has a negative answer for which the counterexample will be
given in [11].
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Let Γ be the covering transformation group of a hyperbolic Riemann surface
X = ∆/Γ of finite type (g, n). Suppose f̃ : ∆ → ∆ is a Teichmüller mapping
with µf̃ = k ϕ

|ϕ| , where ϕ ∈ BQD(∆,Γ)\{0}. Then f̃ induces a new covering

transformation group Γ′ = f̃ ◦ Γ ◦ f̃−1 which produces a new hyperbolic finite-
type Riemann surface X ′ = ∆/Γ′. Therefore, f̃ can be projected to a Teichmüller
mapping f : ∆/Γ→ ∆/Γ′.

Recall that the Bers space BQD(X) is the space of all holomorphic quadratic
differentials ϕ(z)dz2 on X that are bounded in the following sense:

‖ϕ‖X = sup
p∈X
|ϕ(p)|σ−1(p) <∞,

where σ(p) denotes the Poincaré metric density on X . It is well known that
BQD(X) is canonically identified with BQD(∆,Γ). From the Riemann-Roch The-
orem it readily follows that BQD(∆,Γ) is a complex Banach space of 3g − 3 + n
dimensions. The results on harmonic maps ([4], [9]) also show that there is a proper
homeomorphism of BQD(X) onto the Teichmüller space T (X) of X . In the sense
of not distinguishing BQD(X) from BQD(∆,Γ), we have ‖ϕ‖∆ = ‖ϕ‖X .

Now, we can conclude that f̃ is not extremal from Theorem C. This completes
the proof of Theorem 2.

Combining Theorems 1 and 2, it is not difficult to see that ϕ ∈ BQD(∆,Γ) has
the property:

Corollary. Let Γ be the covering transformation group of a hyperbolic finite-type
Riemann surface. Suppose ϕ(z) is in BQD(∆,Γ)\{0}. Then

(3.1) lim
r→1

A(r, ϕ)
logs(1/(1− r)) =∞, for any given s > 0.

On the other hand, it is evident that A(r, ϕ) = O( 1
1−r ) (as r → 1) for all ϕ in

BQD(∆).
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