Hilbert-Schmidt Hankel operators on the Segal-Bargmann space
HTML articles powered by AMS MathViewer
- by Wolfram Bauer
- Proc. Amer. Math. Soc. 132 (2004), 2989-2996
- DOI: https://doi.org/10.1090/S0002-9939-04-07264-8
- Published electronically: June 2, 2004
- PDF | Request permission
Abstract:
This paper considers Hankel operators on the Segal-Bargmann space of holomorphic functions on $\mathbb {C}^n$ that are square integrable with respect to the Gaussian measure. It is shown that in the case of a bounded symbol $g \in L^{\infty }(\mathbb {C}^n)$ the Hankel operator $H_g$ is of the Hilbert-Schmidt class if and only if $H_{\bar {g}}$ is Hilbert-Schmidt. In the case where the symbol is square integrable with respect to the Lebesgue measure it is known that the Hilbert-Schmidt norms of the Hankel operators $H_g$ and $H_{\bar {g}}$ coincide. But, in general, if we deal with bounded symbols, only the inequality $\|H_g\|_{HS}\leq 2\|H_{\bar {g}}\|_{HS}$ can be proved. The results have a close connection with the well-known fact that for bounded symbols the compactness of $H_g$ implies the compactness of $H_{\bar {g}}$.References
- Sheldon Axler and Dechao Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127 (1998), no. 2, 113–136. MR 1488147, DOI 10.4064/sm-127-2-113-136
- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214. MR 157250, DOI 10.1002/cpa.3160140303
- C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), no. 2, 813–829. MR 882716, DOI 10.1090/S0002-9947-1987-0882716-4
- C. A. Berger and L. A. Coburn, Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), no. 3, 273–299. MR 859136, DOI 10.1016/0022-1236(86)90099-6
- C. A. Berger and L. A. Coburn, Heat flow and Berezin-Toeplitz estimates, Amer. J. Math. 116 (1994), no. 3, 563–590. MR 1277446, DOI 10.2307/2374991
- C. A. Berger, L. A. Coburn, and K. H. Zhu, Toeplitz operators and function theory in $n$-dimensions, Pseudodifferential operators (Oberwolfach, 1986) Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 28–35. MR 897772, DOI 10.1007/BFb0077736
- Huiping Li, Schatten class Hankel operators on the Bergman spaces of strongly pseudoconvex domains, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1211–1221. MR 1169879, DOI 10.1090/S0002-9939-1993-1169879-9
- Karel Stroethoff, Hankel and Toeplitz operators on the Fock space, Michigan Math. J. 39 (1992), no. 1, 3–16. MR 1137884, DOI 10.1307/mmj/1029004449
- Karel Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990), no. 1, 159–174. MR 1031892
- Jingbo Xia, Hankel operators in the Bergman space and Schatten $p$-classes: the case $1<p<2$, Proc. Amer. Math. Soc. 129 (2001), no. 12, 3559–3567. MR 1860488, DOI 10.1090/S0002-9939-01-06217-7
- Xia, J. and Zheng, D., Standard deviation and Schatten class Hankel operators on the Segal-Bargmann space, preprint, 2000.
- Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007
- Ke He Zhu, Schatten class Hankel operators on the Bergman space of the unit ball, Amer. J. Math. 113 (1991), no. 1, 147–167. MR 1087805, DOI 10.2307/2374825
- Ke He Zhu, Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. 109 (1990), no. 3, 721–730. MR 1013987, DOI 10.1090/S0002-9939-1990-1013987-7
- Ke He Zhu, Hankel operators on the Bergman space of bounded symmetric domains, Trans. Amer. Math. Soc. 324 (1991), no. 2, 707–730. MR 1093426, DOI 10.1090/S0002-9947-1991-1093426-6
Bibliographic Information
- Wolfram Bauer
- Affiliation: Department of Mathematics, State University of New York, Buffalo, New York 14260
- Address at time of publication: Johannes Gutenberg Universität Mainz, Fachbereich Mathematik und Informatik, Staudinger Weg 9, 55128 Mainz, Germany
- Email: BauerWolfram@web.de
- Received by editor(s): July 10, 2002
- Received by editor(s) in revised form: February 15, 2003
- Published electronically: June 2, 2004
- Additional Notes: This work was supported by a fellowship of the “Deutscher akademischer Austauschdienst” (DAAD)
- Communicated by: Joseph A. Ball
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2989-2996
- MSC (2000): Primary 47B35
- DOI: https://doi.org/10.1090/S0002-9939-04-07264-8
- MathSciNet review: 2063120