G-structure on the cohomology of Hopf algebras
HTML articles powered by AMS MathViewer
- by Marco A. Farinati and Andrea L. Solotar
- Proc. Amer. Math. Soc. 132 (2004), 2859-2865
- DOI: https://doi.org/10.1090/S0002-9939-04-07274-0
- Published electronically: June 2, 2004
- PDF | Request permission
Abstract:
We prove that $\mathrm {Ext} ^{\bullet }_A(k,k)$ is a Gerstenhaber algebra, where $A$ is a Hopf algebra. In case $A=D(H)$ is the Drinfeld double of a finite-dimensional Hopf algebra $H$, our results imply the existence of a Gerstenhaber bracket on $H^{\bullet }_{GS}(H,H)$. This fact was conjectured by R. Taillefer. The method consists of identifying $H^{\bullet }_{GS}(H,H)\cong {\mathrm {Ext}}^{\bullet }_A(k,k)$ as a Gerstenhaber subalgebra of $H^{\bullet }(A,A)$ (the Hochschild cohomology of $A$).References
- D. J. Benson, Representations and cohomology. I, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. Basic representation theory of finite groups and associative algebras. MR 1644252
- Claude Cibils and Marc Rosso, Hopf bimodules are modules, J. Pure Appl. Algebra 128 (1998), no. 3, 225–231. MR 1626345, DOI 10.1016/S0022-4049(97)00060-1
- Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288. MR 161898, DOI 10.2307/1970343
- Murray Gerstenhaber and Samuel D. Schack, Bialgebra cohomology, deformations, and quantum groups, Proc. Nat. Acad. Sci. U.S.A. 87 (1990), no. 1, 478–481. MR 1031952, DOI 10.1073/pnas.87.1.478
- Murray Gerstenhaber and Samuel D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) Contemp. Math., vol. 134, Amer. Math. Soc., Providence, RI, 1992, pp. 51–92. MR 1187279, DOI 10.1090/conm/134/1187279
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- Stefan Schwede, An exact sequence interpretation of the Lie bracket in Hochschild cohomology, J. Reine Angew. Math. 498 (1998), 153–172. MR 1629858, DOI 10.1515/crll.1998.048
- Dragoş Ştefan, Hochschild cohomology on Hopf Galois extensions, J. Pure Appl. Algebra 103 (1995), no. 2, 221–233. MR 1358765, DOI 10.1016/0022-4049(95)00101-2
- Rachel Taillefer, Cohomology theories of Hopf bimodules and cup-product, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 3, 189–194 (English, with English and French summaries). MR 1817359, DOI 10.1016/S0764-4442(00)01811-5
- Rachel Taillefer, thesis, Université Montpellier 2 (2001).
- Rachel Taillefer, Injective Hopf bimodules, cohomologies of infinite dimensional Hopf algebras and graded-commutativity of the Yoneda product. ArXivMath math.KT/0207154.
Bibliographic Information
- Marco A. Farinati
- Affiliation: Departamento de Matemática Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab I. 1428, Buenos Aires, Argentina
- Email: mfarinat@dm.uba.ar
- Andrea L. Solotar
- Affiliation: Departamento de Matemática Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab I. 1428, Buenos Aires, Argentina
- MR Author ID: 283990
- Email: asolotar@dm.uba.ar
- Received by editor(s): August 27, 2002
- Received by editor(s) in revised form: March 19, 2003
- Published electronically: June 2, 2004
- Additional Notes: This research was partially supported by UBACYT X062 and Fundación Antorchas (proyecto 14022 - 47). Both authors are research members of CONICET (Argentina).
- Communicated by: Martin Lorenz
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2859-2865
- MSC (2000): Primary 16E40, 16W30
- DOI: https://doi.org/10.1090/S0002-9939-04-07274-0
- MathSciNet review: 2063104