Summable processes versus semimartingales
HTML articles powered by AMS MathViewer
- by Nicolae Dinculeanu and Oana Mocioalca
- Proc. Amer. Math. Soc. 132 (2004), 3089-3095
- DOI: https://doi.org/10.1090/S0002-9939-04-07308-3
- Published electronically: May 20, 2004
- PDF | Request permission
Abstract:
The classical stochastic integral $\int H dX$ is defined for real-valued semimartingales $X$. For processes with values in a Banach space $E$, the stochastic integral $\int H dX$ is defined for locally summable processes $X$, using a measure-theoretical approach. We investigate the relationship between semimartingales and locally summable processes. A real-valued, locally summable process is a special semimartingale. We prove that in infinite-dimensional Banach spaces, a locally summable process is not necessarily a semimartingale.References
- J. K. Brooks and N. Dinculeanu, Stochastic Integration in Banach Spaces, Seminar on Stochastic Processes, Birkhäuser, Boston, 1991, 27-115.
- Claude Dellacherie and Paul-André Meyer, Probabilités et potentiel, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV, Hermann, Paris, 1975 (French). Chapitres I à IV; Édition entièrement refondue. MR 0488194
- Nicolae Dinculeanu, Vector integration and stochastic integration in Banach spaces, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2000. MR 1782432, DOI 10.1002/9781118033012
- A. U. Kussmaul, Stochastic integration and generalized martingales, Research Notes in Mathematics, No. 11, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1977. MR 0488281
Bibliographic Information
- Nicolae Dinculeanu
- Affiliation: Department of Mathematics, University of Florida, 358 Little Hall, P.O. Box 118105, Gainesville, Florida 32611–8105
- Email: nd@math.ufl.edu
- Oana Mocioalca
- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
- Email: oana@math.purdue.edu
- Received by editor(s): August 27, 2002
- Published electronically: May 20, 2004
- Communicated by: Richard C. Bradley
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 3089-3095
- MSC (2000): Primary 60H05; Secondary 60G20
- DOI: https://doi.org/10.1090/S0002-9939-04-07308-3
- MathSciNet review: 2063131