Puiseux parametric equations of analytic sets
HTML articles powered by AMS MathViewer
- by Fuensanta Aroca
- Proc. Amer. Math. Soc. 132 (2004), 3035-3045
- DOI: https://doi.org/10.1090/S0002-9939-04-07337-X
- Published electronically: June 2, 2004
- PDF | Request permission
Abstract:
We prove the existence of local Puiseux-type parameterizations of complex analytic sets via Laurent series convergent on wedges. We describe the wedges in terms of the Newton polyhedron of a function vanishing on the discriminant locus of a projection. The existence of a local parameterization of quasi-ordinary singularities of complex analytic sets of any codimension will come as a consequence of our main result.References
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Shreeram Shankar Abhyankar, Local analytic geometry, Pure and Applied Mathematics, Vol. XIV, Academic Press, New York-London, 1964. MR 0175897
- F. Aroca, Métodos algebraicos en ecuaciones diferenciales ordinarias en el campo complejo, Tesis Doctoral, Universidad de Valladolid, 2000.
- F. Aroca and J. Cano, Formal solutions of linear PDEs and convex polyhedra, J. Symbolic Comput. 32 (2001), no. 6, 717–737. Effective methods in rings of differential operators. MR 1866713, DOI 10.1006/jsco.2001.0492
- José M. Aroca, Heisuke Hironaka, and José L. Vicente, Desingularization theorems, Memorias de Matemática del Instituto “Jorge Juan” [Mathematical Memoirs of the Jorge Juan Institute], vol. 30, Consejo Superior de Investigaciones Científicas, Madrid, 1977. MR 0480502
- Alexander D. Bruno, Local methods in nonlinear differential equations, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1989. Part I. The local method of nonlinear analysis of differential equations. Part II. The sets of analyticity of a normalizing transformation; Translated from the Russian by William Hovingh and Courtney S. Coleman; With an introduction by Stephen Wiggins. MR 993771, DOI 10.1007/978-3-642-61314-2
- E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by R. A. M. Hoksbergen. MR 1111477, DOI 10.1007/978-94-009-2366-9
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417, DOI 10.1007/978-0-8176-4771-1
- P. D. González Pérez, Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canad. J. Math. 52 (2000), no. 2, 348–368 (French, with French summary). MR 1755782, DOI 10.4153/CJM-2000-016-8
- Heisuke Hironaka, Introduction to the theory of infinitely near singular points, Memorias de Matemática del Instituto “Jorge Juan”, No. 28, Consejo Superior de Investigaciones Científicas, Madrid, 1974. MR 0399505
- Henry B. Laufer, Normal two-dimensional singularities, Annals of Mathematics Studies, No. 71, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0320365
- Ignacio Luengo, A new proof of the Jung-Abhyankar theorem, J. Algebra 85 (1983), no. 2, 399–409. MR 725092, DOI 10.1016/0021-8693(83)90104-7
- John McDonald, Fiber polytopes and fractional power series, J. Pure Appl. Algebra 104 (1995), no. 2, 213–233. MR 1360177, DOI 10.1016/0022-4049(94)00129-5
- William S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer-Verlag, New York, 1991. MR 1095046, DOI 10.1007/978-1-4939-9063-4
- Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000. MR 1734566, DOI 10.1007/978-3-662-04112-3
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- R. J. Walker, Reduction of singularities of an algebraic surface, Ann. Math. (2) 36 (1935), 336-365.
- M.-Angeles Zurro, The Abhyankar-Jung theorem revisited, J. Pure Appl. Algebra 90 (1993), no. 3, 275–282. MR 1255715, DOI 10.1016/0022-4049(93)90045-U
Bibliographic Information
- Fuensanta Aroca
- Affiliation: Instituto de Matematicas UNAM (Unidad Cuernavaca), Apartado Postal 273-3, Administración de Correos 3, CP 62251, Cuernavaca, Morelos, Mexico
- Address at time of publication: Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
- Email: fuen@matcuer.unam.mx, fuen@icmc.usp.br
- Received by editor(s): February 6, 2002
- Received by editor(s) in revised form: May 19, 2003
- Published electronically: June 2, 2004
- Additional Notes: The author was supported first by Post-doctoral Grant of TMR Project Singularidades de Ecuaciones Diferenciales y Foliaciones at the University of Lisbon, and then by UNAM at Instituto de Matemáticas-Cuernavaca (Mexico)
- Communicated by: Ronald A. Fintushel
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 3035-3045
- MSC (2000): Primary 32S05, 32B10; Secondary 14M25
- DOI: https://doi.org/10.1090/S0002-9939-04-07337-X
- MathSciNet review: 2063125