Interpolation between $L_{1}$ and $L_{p}, 1 < p < \infty$
HTML articles powered by AMS MathViewer
- by Sergei V. Astashkin and Lech Maligranda
- Proc. Amer. Math. Soc. 132 (2004), 2929-2938
- DOI: https://doi.org/10.1090/S0002-9939-04-07425-8
- Published electronically: May 21, 2004
- PDF | Request permission
Abstract:
We show that if $X$ is a rearrangement invariant space on $[0, 1]$ that is an interpolation space between $L_{1}$ and $L_{\infty }$ and for which we have only a one-sided estimate of the Boyd index $\alpha (X) > 1/p, 1 < p < \infty$, then $X$ is an interpolation space between $L_{1}$ and $L_{p}$. This gives a positive answer for a question posed by Semenov. We also present the one-sided interpolation theorem about operators of strong type $(1, 1)$ and weak type $(p, p), 1 < p < \infty$.References
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- David W. Boyd, Spaces between a pair of reflexive Lebesgue spaces, Proc. Amer. Math. Soc. 18 (1967), 215–219. MR 212556, DOI 10.1090/S0002-9939-1967-0212556-3
- David W. Boyd, The spectral radius of averaging operators, Pacific J. Math. 24 (1968), 19–28. MR 221308, DOI 10.2140/pjm.1968.24.19
- David W. Boyd, Indices of function spaces and their relationship to interpolation, Canadian J. Math. 21 (1969), 1245–1254. MR 412788, DOI 10.4153/CJM-1969-137-x
- Michael Cwikel, Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), no. 2, 213–236. MR 442714, DOI 10.1007/BF02385836
- Ju. I. Gribanov, Banach function spaces and integral operators. II, Izv. Vysš. Učebn. Zaved. Matematika 1966 (1966), no. 6 (55), 54–63 (Russian). MR 0212619
- Tord Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177–199. MR 415352, DOI 10.7146/math.scand.a-10976
- W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, v+298. MR 527010, DOI 10.1090/memo/0217
- S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs. MR 649411
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9
- George G. Lorentz and Tetsuya Shimogaki, Interpolation theorems for the pairs of spaces $(L^{p},\,L^{\infty })$ and $(L^{1},\,L^{q})$, Trans. Amer. Math. Soc. 159 (1971), 207–221. MR 380447, DOI 10.1090/S0002-9947-1971-0380447-9
- Lech Maligranda, A generalization of the Shimogaki theorem, Studia Math. 71 (1981/82), no. 1, 69–83. MR 651325, DOI 10.4064/sm-71-1-69-83
- Lech Maligranda, Indices and interpolation, Dissertationes Math. (Rozprawy Mat.) 234 (1985), 49. MR 820076
- Mieczysław Mastyło, Interpolation of linear operators in the Köthe dual spaces, Ann. Mat. Pura Appl. (4) 154 (1989), 231–242. MR 1043073, DOI 10.1007/BF01790350
- G. I. Russu, Symmetric spaces of functions that do not have the majorization property, Mat. Issled. 4 (1969), no. vyp. 4 (14), 82–93 (Russian). MR 0276750
Bibliographic Information
- Sergei V. Astashkin
- Affiliation: Department of Mathematics, Samara State University, Akad. Pavlova 1, 443011 Samara, Russia
- MR Author ID: 197703
- Email: astashkn@ssu.samara.ru
- Lech Maligranda
- Affiliation: Department of Mathematics, Lulelå University of Technology, se-971 87 Luleå, Sweden
- MR Author ID: 118770
- Email: lech@sm.luth.se
- Received by editor(s): October 9, 2002
- Published electronically: May 21, 2004
- Additional Notes: This research was supported by a grant from the Royal Swedish Academy of Sciences for cooperation between Sweden and the former Soviet Union (project 35156). The second author was also supported in part by the Swedish Natural Science Research Council (NFR)-grant M5105-20005228/2000.
- Communicated by: Jonathan M. Borwein
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2929-2938
- MSC (2000): Primary 46E30, 46B42, 46B70
- DOI: https://doi.org/10.1090/S0002-9939-04-07425-8
- MathSciNet review: 2063112