On the lift-off constant for elastically supported plates
HTML articles powered by AMS MathViewer
- by R. F. Bass, J. Horák and P. J. McKenna
- Proc. Amer. Math. Soc. 132 (2004), 2951-2958
- DOI: https://doi.org/10.1090/S0002-9939-04-07428-3
- Published electronically: June 2, 2004
- PDF | Request permission
Abstract:
In this paper we continue the study begun by Kawohl and Sweers of the precise constant at which the elastic foundation supporting a bending plate can allow lift-off in the case of downward loading. We provide a number of numerical results and a rigorous result on a different counterexample than the one suggested in Kawohl and Sweers (2002). Important open problems are summarized at the conclusion.References
- Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1329542
- Richard F. Bass and Krzysztof Burdzy, Conditioned Brownian motion in planar domains, Probab. Theory Related Fields 101 (1995), no. 4, 479–493. MR 1327222, DOI 10.1007/BF01202781
- Boggio, T., Sull’equilibrio delle piastre elastiche incastrate, Rend. Acc. Lincei 10 (1901), 197- 205.
- Boggio, T., Sulle funzioni di Green d’ordine $m$, Rend. Circ. Mat. Palermo 20 (1905), 97-135.
- M. Cranston, E. Fabes, and Z. Zhao, Potential theory for the Schrödinger equation, Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 2, 213–216. MR 854557, DOI 10.1090/S0273-0979-1986-15478-9
- M. Cranston and T. R. McConnell, The lifetime of conditioned Brownian motion, Z. Wahrsch. Verw. Gebiete 65 (1983), no. 1, 1–11. MR 717928, DOI 10.1007/BF00534989
- M. Cranston, Lifetime of conditioned Brownian motion in Lipschitz domains, Z. Wahrsch. Verw. Gebiete 70 (1985), no. 3, 335–340. MR 803674, DOI 10.1007/BF00534865
- Charles V. Coffman, On the structure of solutions $\Delta ^{2}u=\lambda u$ which satisfy the clamped plate conditions on a right angle, SIAM J. Math. Anal. 13 (1982), no. 5, 746–757. MR 668318, DOI 10.1137/0513051
- C. V. Coffman and R. J. Duffin, On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle, Adv. in Appl. Math. 1 (1980), no. 4, 373–389. MR 603137, DOI 10.1016/0196-8858(80)90018-4
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Hans-Christoph Grunau and Guido Sweers, Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions, Math. Nachr. 179 (1996), 89–102. MR 1389451, DOI 10.1002/mana.19961790106
- Hadamard, J., Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques incastrées, Mémoires presentes par divers savants à l’Académie des Sciences, Vol. 33 (1908), 1-128.
- Hadamard, J., Sur certains cas intéressants du problème biharmonique, Atti IVe Congr. Intern. Mat. Rome (1909), 12-14.
- Bernd Kawohl and Guido Sweers, On ‘anti’-eigenvalues for elliptic systems and a question of McKenna and Walter, Indiana Univ. Math. J. 51 (2002), no. 5, 1023–1040. MR 1947867, DOI 10.1512/iumj.2002.51.2275
- Lin, Li, and Adams, G. G., Beam on tensionless elastic foundation J. Eng. Mech., 113 (1986), 542-553.
- P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal. 98 (1987), no. 2, 167–177. MR 866720, DOI 10.1007/BF00251232
- Patil, S. P., Response of infinite railroad track to vibrating mass, J. Eng. Mech., 114 (1988) 688-703.
- Johann Schröder, Operator inequalities, Mathematics in Science and Engineering, vol. 147, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 578001
Bibliographic Information
- R. F. Bass
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
- Email: bass@math.uconn.edu
- J. Horák
- Affiliation: Department of Mathematics, University of Basel, Basel, Switzerland
- Address at time of publication: Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-50923 Köln, Germany
- Email: jhorak@math.uni-koeln.de
- P. J. McKenna
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
- Email: mckenna@math.uconn.edu
- Received by editor(s): January 7, 2003
- Published electronically: June 2, 2004
- Additional Notes: The research of the first author was partially supported by NSF grant DMS-9988496
- Communicated by: David S. Tartakoff
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2951-2958
- MSC (2000): Primary 35J40; Secondary 60J65
- DOI: https://doi.org/10.1090/S0002-9939-04-07428-3
- MathSciNet review: 2063115