Base-cover paracompactness
HTML articles powered by AMS MathViewer
- by Strashimir G. Popvassilev
- Proc. Amer. Math. Soc. 132 (2004), 3121-3130
- DOI: https://doi.org/10.1090/S0002-9939-04-07457-X
- Published electronically: May 12, 2004
- PDF | Request permission
Abstract:
Call a topological space $X$ base-cover paracompact if $X$ has an open base $\mathcal {B}$ such that every cover $\mathcal {C}\subset \mathcal {B}$ of $X$ contains a locally finite subcover. A subspace of the Sorgenfrey line is base-cover paracompact if and only if it is $F_\sigma$. The countable sequential fan is not base-cover paracompact. A paracompact space is locally compact if and only if its product with every compact space is base-cover paracompact.References
- A. Arhangel′skiĭ, On the metrization of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 589–595 (Russian, with English summary). MR 125561
- Zoltán T. Balogh and Harold Bennett, Total paracompactness of real GO-spaces, Proc. Amer. Math. Soc. 101 (1987), no. 4, 753–760. MR 911046, DOI 10.1090/S0002-9939-1987-0911046-2
- Harold R. Bennett, Robert W. Heath, and David J. Lutzer, GO-spaces with $\sigma$-closed discrete dense subsets, Proc. Amer. Math. Soc. 129 (2001), no. 3, 931–939. MR 1707135, DOI 10.1090/S0002-9939-00-05582-9
- Carlos R. Borges and Albert C. Wehrly, Another study of $D$-spaces, Questions Answers Gen. Topology 14 (1996), no. 1, 73–76. MR 1384056
- Dennis K. Burke and J. Tatch Moore, Subspaces of the Sorgenfrey line, Topology Appl. 90 (1998), no. 1-3, 57–68. MR 1648294, DOI 10.1016/S0166-8641(97)00181-8
- Peter de Caux, Yet another property of the Sorgenfrey plane, Topology Proc. 6 (1981), no. 1, 31–43 (1982). MR 650479
- H. H. Corson, T. J. McMinn, E. A. Michael and J. Nagata, Bases and local finiteness, Notices Amer. Math. Soc. 6 (1959), 814 (abstract).
- Douglas W. Curtis, Total and absolute paracompactness, Fund. Math. 77 (1973), no. 3, 277–283. MR 321005, DOI 10.4064/fm-77-3-277-283
- Eric K. van Douwen and David J. Lutzer, A note on paracompactness in generalized ordered spaces, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1237–1245. MR 1396999, DOI 10.1090/S0002-9939-97-03902-6
- Eric K. van Douwen and Washek F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), no. 2, 371–377. MR 547605, DOI 10.2140/pjm.1979.81.371
- M. J. Faber, Metrizability in generalized ordered spaces, Mathematical Centre Tracts, No. 53, Mathematisch Centrum, Amsterdam, 1974. MR 0418053
- William G. Fleissner and Adrienne M. Stanley, $D$-spaces, Topology Appl. 114 (2001), no. 3, 261–271. MR 1838325, DOI 10.1016/S0166-8641(00)00042-0
- R. Ford, Basic properties in dimension theory, Dissertation, Auburn University, 1963.
- J. Gerlits and Zs. Nagy, Some properties of $C(X)$. I, Topology Appl. 14 (1982), no. 2, 151–161. MR 667661, DOI 10.1016/0166-8641(82)90065-7
- Gary Gruenhage, $k$-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), no. 3, 478–482. MR 581009, DOI 10.1090/S0002-9939-1980-0581009-1
- A. Lelek, Some cover properties of spaces, Fund. Math. 64 (1969), 209–218. MR 242108, DOI 10.4064/fm-64-2-209-218
- D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. (Rozprawy Mat.) 89 (1971), 32. MR 324668
- John O’Farrell, Some methods of determining total paracompactness, Dissertation, Auburn University, 1982.
- J. M. O’Farrell, The Sorgenfrey line is not totally metacompact, Houston J. Math. 9 (1983), no. 2, 271–273. MR 703275
- J. M. O’Farrell, Construction of a Hurewicz metric space whose square is not a Hurewicz space, Fund. Math. 127 (1987), no. 1, 41–43. MR 883150, DOI 10.4064/fm-127-1-41-43
- S. G. Popvassilev, Marczewski measurable sets, base-cover paracompactness and uniform base-cover paracompactness, Dissertation, Auburn University, 2002.
- S. G. Popvassilev, Base-family paracompactness, submitted for publication.
- John E. Porter, Generalizations of totally paracompact spaces, Dissertation, Auburn University, 2000.
- John E. Porter, Base-paracompact spaces, Topology Appl. 128 (2003), no. 2-3, 145–156. MR 1956610, DOI 10.1016/S0166-8641(02)00109-8
- R. Telgársky and H. Kok, The space of rationals is not absolutely paracompact, Fund. Math. 73 (1971/72), no. 1, 75–78. MR 293585, DOI 10.4064/fm-73-1-75-78
- S. Watson, The construction of topological spaces: planks and resolutions, Recent progress in general topology (Prague, 1991), North-Holland, Amsterdam, 1992, pp. 673–757.
Bibliographic Information
- Strashimir G. Popvassilev
- Affiliation: Department of Mathematics, University of Louisiana at Lafayette, 217 Maxim D. Doucet Hall, P.O. Box 41010, Lafayette, Louisiana 70504-1010
- Email: popvast@auburn.edu, pgs2889@louisiana.edu
- Received by editor(s): November 20, 2002
- Received by editor(s) in revised form: June 28, 2003
- Published electronically: May 12, 2004
- Additional Notes: The author was supported in part by National Science Fund of Bulgaria Grant MM–1105/2001
- Communicated by: Alan Dow
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 3121-3130
- MSC (2000): Primary 54D20, 54D70, 54F05; Secondary 54D55, 54B05, 54B10, 06A05, 03E15, 03E35
- DOI: https://doi.org/10.1090/S0002-9939-04-07457-X
- MathSciNet review: 2063135