A new proof for Rockafellar’s characterization of maximal monotone operators
HTML articles powered by AMS MathViewer
- by S. Simons and C. Zălinescu
- Proc. Amer. Math. Soc. 132 (2004), 2969-2972
- DOI: https://doi.org/10.1090/S0002-9939-04-07462-3
- Published electronically: June 2, 2004
- PDF | Request permission
Abstract:
We provide a new and short proof for Rockafellar’s characterization of maximal monotone operators in reflexive Banach spaces based on S. Fitzpatrick’s function and a technique used by R. S. Burachik and B. F. Svaiter for proving their result on the representation of a maximal monotone operator by convex functions.References
- Regina Sandra Burachik and B. F. Svaiter, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2379–2383. MR 1974634, DOI 10.1090/S0002-9939-03-07053-9
- S. Fitzpatrick, Representing monotone operators by convex functions, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), Austral. Nat. Univ., Canberra, 1988, pp. 59–65.
- Jean-Pierre Gossez, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl. 34 (1971), 371–395 (French). MR 313890, DOI 10.1016/0022-247X(71)90119-3
- Juan-Enrique Martinez-Legaz and Michel Théra, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal. 2 (2001), no. 2, 243–247. Special issue for Professor Ky Fan. MR 1848704
- J.-P. Penot, The relevance of convex analysis for the study of monotonicity, Tech. report, University of Pau, Pau, 2002.
- R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75–88. MR 282272, DOI 10.1090/S0002-9947-1970-0282272-5
- Stephen Simons, Minimax and monotonicity, Lecture Notes in Mathematics, vol. 1693, Springer-Verlag, Berlin, 1998. MR 1723737, DOI 10.1007/BFb0093633
- Stephen Simons, Maximal monotone multifunctions of Brøndsted-Rockafellar type, Set-Valued Anal. 7 (1999), no. 3, 255–294. MR 1731953, DOI 10.1023/A:1008779514159
Bibliographic Information
- S. Simons
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
- MR Author ID: 189831
- Email: simons@math.ucsb.edu
- C. Zălinescu
- Affiliation: Faculty of Mathematics, University “Al. I. Cuza” Iaşi, Bd. Carol I, Nr. 11, 700506 Iaşi, Romania
- Email: zalinesc@uaic.ro
- Received by editor(s): February 6, 2003
- Published electronically: June 2, 2004
- Communicated by: Jonathan M. Borwein
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2969-2972
- MSC (2000): Primary 47H05; Secondary 26B25
- DOI: https://doi.org/10.1090/S0002-9939-04-07462-3
- MathSciNet review: 2063117