On the associated family of Delaunay surfaces
HTML articles powered by AMS MathViewer
- by M. Kilian
- Proc. Amer. Math. Soc. 132 (2004), 3075-3082
- DOI: https://doi.org/10.1090/S0002-9939-04-07483-0
- Published electronically: May 12, 2004
- PDF | Request permission
Abstract:
We use the generalised Weierstraß representation of Dorfmeister, Pedit and Wu to obtain the associated family of Delaunay surfaces and derive a formula for the neck size of the surface in terms of the entries of the holomorphic potential.References
- C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pures et Appl. Sér. 1 6 (1841), 309–320.
- Josef Dorfmeister and Guido Haak, Construction of non-simply connected CMC surfaces via dressing, J. Math. Soc. Japan 55 (2003), no. 2, 335–364. MR 1961290, DOI 10.2969/jmsj/1191419120
- J. Dorfmeister and G. Haak, On constant mean curvature surfaces with periodic metric, Pacific J. Math. 182 (1998), no. 2, 229–287. MR 1609603, DOI 10.2140/pjm.1998.182.229
- J. Dorfmeister, F. Pedit, and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), no. 4, 633–668. MR 1664887, DOI 10.4310/CAG.1998.v6.n4.a1
- James Eells, The surfaces of Delaunay, Math. Intelligencer 9 (1987), no. 1, 53–57. MR 869541, DOI 10.1007/BF03023575
- M. Kilian, Constant mean curvature cylinders, Ph.D. thesis, Univ. of Massachusetts, Amherst, 2000.
- Martin Kilian, Ian McIntosh, and Nicholas Schmitt, New constant mean curvature surfaces, Experiment. Math. 9 (2000), no. 4, 595–611. MR 1806295, DOI 10.1080/10586458.2000.10504663
- M. Kilian, N. Schmitt, and I. Sterling, Dressing CMC n-Noids, Math. Z. 246 (2004), no. 3, 501–519.
- Nicholas J. Korevaar, Rob Kusner, and Bruce Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465–503. MR 1010168
- Ian McIntosh, Global solutions of the elliptic $2$D periodic Toda lattice, Nonlinearity 7 (1994), no. 1, 85–108. MR 1260134, DOI 10.1088/0951-7715/7/1/005
- Ernst A. Ruh and Jaak Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569–573. MR 259768, DOI 10.1090/S0002-9947-1970-0259768-5
- N. Schmitt, CMCLab, http://www.gang.umass.edu/software.
- —, Constant mean curvature trinoids, arXiv:math.DG/0403036.
- Brian Smyth, A generalization of a theorem of Delaunay on constant mean curvature surfaces, Statistical thermodynamics and differential geometry of microstructured materials (Minneapolis, MN, 1991) IMA Vol. Math. Appl., vol. 51, Springer, New York, 1993, pp. 123–130. MR 1226924, DOI 10.1007/978-1-4613-8324-6_{9}
- Karen Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1–50. MR 1001271
Bibliographic Information
- M. Kilian
- Affiliation: Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
- Email: masmk@maths.bath.ac.uk
- Received by editor(s): March 4, 2003
- Published electronically: May 12, 2004
- Communicated by: Jon G. Wolfson
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 3075-3082
- MSC (2000): Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9939-04-07483-0
- MathSciNet review: 2063129