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TRIANGULAR Ga ACTIONS ON C4

JAMES K. DEVENEY, DAVID R. FINSTON, AND PETER VAN ROSSUM

(Communicated by Bernd Ulrich)

Abstract. Every locally trivial action of the additive group of complex num-
bers on four-dimensional complex affine space that is given by a triangular
derivation is conjugate to a translation. A criterion for a proper action on
complex affine n-space to be locally trivial is given, along with an example
showing that the hypotheses of the criterion are sharp.

1. Introduction

Let Ga denote the additive group of complex numbers, and X a complex affine
variety. By an action of Ga on X we will mean an algebraic action. It is well
known that every such action can be realized as the exponential of some locally
nilpotent derivation D of the coordinate ring C[X ] and that every locally nilpotent
derivation gives rise to an action. The ring C0 of Ga invariants in C[X ] is equal to
the ring of constants of the generating derivation.

Given an action σ : Ga × X → X, let σ̄ : Ga ×X → X ×X denote the graph
morphism and σ̂ : C[X ] → C[X, t] (resp. σ̃ : C[X × X ] → C[X, t]) denote the
induced maps on coordinate rings.

The action is said to be proper if σ̄ is a proper morphism (i.e., if C[X, t] is
integral over the image of σ̃). The action is said to be equivariantly trivial if there
is a variety Y for which X is Ga equivariantly isomorphic to Ga × Y, the action on
Ga×Y being given by g ∗ (y, h) = (y, g+h). The action is locally trivial if there is a
cover of X by Ga stable affine open subsets Xi on which the action is equivariantly
trivial. Equivariant triviality of an action on X is equivalent with the existence of
a regular function s ∈ C[X ] for which Ds = 1. Such a function is called a slice and,
if one exists, C[X ] = C0[s]. If X is factorial, i.e., its coordinate ring is a unique
factorization domain, then local triviality is equivalent with the intersection of the
kernel and image of D generating the unit ideal in C[X ].

The affine cancellation problem can be phrased in terms of Ga actions on X =
Cn+1: If the action is equivariantly trivial, is then Y ∼= Cn? The answer is
affirmative for n = 2, and for n = 3 provided the ring of invariants contains a
coordinate function [16, Cor. 4.5.5]. It has recently been shown that the ring of
Ga invariants is finitely generated for actions on C4 whose generating derivation is
triangulable (triangulable actions) [2]. These positive results suggest that a more
complete understanding of actions on C4 is within reach. In section 1 we show that
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locally trivial triangulable actions on C4 are in fact equivariantly trivial, admitting
a geometric quotient isomorphic to C3. Thus the example of Winkelmann [14] of a
locally trivial, but not equivariantly trivial, triangular action on C5 is optimal.

Locally trivial actions are proper, and proper actions on Cn are locally trivial
provided that C[X ] is a flat ring extension of C0 [4, Theorem 2.8]. This need not
always be the case as shown in [5]. On the other hand, Holmann [12] showed that
any proper holomorphic action on a complex manifold admits a quotient that is a
manifold, while Popp [11, Lecture 3] showed that this quotient admits the structure
of an algebraic space if the action is algebraic and the manifold is a smooth variety.
Based on these results, we give in section 3 a ring-theoretic criterion for a proper
action on Cn to be locally trivial and indicate where the hypotheses fail for the
example in [5] of a nonlocally trivial proper action on C5.

2. Locally trivial triangular actions on C4

From [4, Theorem 2.8] we know in general that the quotient of a locally trivial
action on an affine factorial variety X exists as a quasiaffine variety Y ⊂ Spec
R, where R is the subring of C0 constructed as follows: Let δ(a1), ..., δ(an) ∈ C0

generate the unit ideal in C[X ], and setRi = C[X, 1
δ(ai)

]Ga . Note that C[X, 1
δ(ai)

] =
Ri[ ai

δ(ai)
] so that Ri is a finitely generated C algebra, say Ri = C[bi1, ..., bim, 1

δ(ai)
],

with bij ∈ C0. The ring R = C[bij , δ(ai) | 1 ≤ i ≤ n, 1 ≤ j ≤ m] is the required
subring of C0.

It is easy to see that C0 is the factorial closure of R (i.e., the intersection of all
unique factorization domains containing R), and we ask whether C0 is the integral
closure of R. Of course a positive answer would solve Hilbert’s 14th problem for
locally trivial Ga actions. Since Y is a geometric quotient, C0 is the ring of global
sections of its structure sheaf. With I denoting the ideal defining the complement
of Y in Spec R, and F the quotient field of R, the ring C0 is isomorphic to
TIR =

⋃
n≥0{α ∈ F |αIn ⊂ R}, the ideal transform of R with respect to I. A

fuller discussion of these notions can be found in [6].
Consider a locally trivial Ga action on C4 generated by the locally nilpotent

derivation of C[x1, x2, x3, x4] defined by δ

x4 7→ p(x1, x2, x3),
x3 7→ q(x1, x2),
x2 7→ r(x1),
x1 7→ 0.

It was recently shown [2] that C0 is finitely generated for any triangular action on
C4. In the special case under consideration, we show that Y ∼= Spec C0. Since the
quotient Y is then affine, the action is equivariantly trivial (locally trivial actions
with quotient Y correspond to elements of H1(Y,O(Y )), which is 0 with Y affine),
and van Rossum’s thesis [16] then shows that Y ∼= C3.

Theorem 2.1. Let Ga act locally trivially on X = C4 via a triangular derivation
as above. Then the action is equivariantly trivial with quotient isomorphic to C3.

Proof. Set Z =Spec C0, and denote by π : X → Z the Ga equivariant morphism
induced by the ring inclusion C0 ↪→ C[x1, x2, x3, x4]. By hypothesis, x1 ∈ C0 and
is prime, so that for each λ ∈ C, πλ, the restriction of π to the hyperplane Xλ



TRIANGULAR Ga ACTIONS ON C4 2843

defined by x1 − λ, is a Ga equivariant morphism to the surface Zλ ⊂ Z defined
there by x1 − λ. The assertion is proved by showing that πλ is surjective for all λ.

It suffices to consider only those λ for which x1−λ divides r(x1), since otherwise
x2
r(x1) defines a slice on Xλ. Assume that r(0) = 0, and we consider π0 : X0 → Z0.

Note that X0
∼= C3 so that the action on X0 has a slice and π0 is an orbit map,

but Z0 is not a priori the quotient (which is the open image of π0). Indeed,
Z0
∼= Spec C0/(x1), and C0/(x1) ⊂ [C[X ]/(x1)]Ga , the latter being the ring of

functions defined on the image of π0 in Y0, and X0 →Spec [C[X ]/(x1)]Ga is clearly
surjective. Denote by I the ideal in C0/(x1) defining Y0 − im(π0). We have
TI(C0/(x1)) ∼= [C[X ]/(x1)]Ga ∼= C[2], a polynomial ring in two variables.

Lemma 2.5 of [2] can be interpreted in this context as saying that C0/(x1) =
R[u], where u is transcendental over some subring R, i.e., that the algorithm [1]
to construct the ring of invariants terminates with the adjunction of an element
transcendental over a subring. Denote by R̂ the integral closure of R in its quotient
field. Note that R̂[u] ⊂ TI (R[u]) since both are integrally closed. Moreover, R̂
is Dedekind and rational since the quotient field, qf(R̂[u]) ∼= C(2) ∼= qf(R)(u).
By the generalized Luroth theorem, qf(R) is rational. Since R̂ is a subring of a
polynomial ring, R̂ ∼= C[1].

Note that TIR̂[u] (R̂[u]) ∼= TI (R[u]) ∼= C[2]. If ht(IR̂[u]) = 1, then IR̂[u] is

principal, say IR̂[u] = (f). But then 1
f ∈ C[2], a contradiction. Thus ht(IR̂[u]) = 2,

which implies that TIR̂[u] (R̂[u]) = R̂[u]. Finally, we obtain the chain of surjections:

X0 → Spec [C[X ]/(x1)]Ga = Spec R̂[u]→ Spec R[u] = Z0.

That the quotient is isomorphic to C3 follows from a special case of [16, Cor.
4.5.5]. �
Remark 2.2. It appears to be true that every fixed point free action on C3 has a
slice (S. Kaliman, preprint), while Winkelmann produced an example of a locally
trivial triangular derivation on C5 that has no slice, and there is an example of a
triangular proper action on C5 that is not locally trivial. The situation for C4

is not so clear, but the next section proposes an avenue of attack on the proper
triangular case.

3. Proper actions

Consider a proper Ga action on X = Cn generated by the locally nilpotent
derivation D . Assume that the ring of invariants C0 is finitely generated defining
the affine variety Y = Spec C0. Let π : Cn → Y as above be the morphism
induced by the ring inclusion C0 ⊂ C[x1, ..., xn], and let I denote the ideal C0∩ imD
(I = C0 if and only of the action is equivariantly trivial). Assuming that the action
is not equivariantly trivial, in particular n ≥ 4, denote by Z the closed subset of
Y defined by I. From [7] we know that every irreducible component of Z has
codimension exactly two and that π |X−π−1Z : X − π−1Z → Y − Z is a principal
Ga bundle. The action is locally trivial if and only if π−1Z = ∅.

From Holmann [12]: we know that the space of orbits carries the structure of
an analytic space X/Ga (in fact, X/Ga is a manifold) and from Popp [11] that
X/Ga is an algebraic space. The simplicity of our context enables us to make this
even more explicit. The orbit Gax of any point x ∈ X is isomorphic to a line.
As such it is a coordinate line in some coordinate system, (x1, ..., xn) for X, say
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Gax is the x1-axis, and we can take x to be the origin. If Hx is the hyperplane
x1 = 0, then it is clear that the morphism Ga × Hx

∼= Cn → X = Cn given by
ρ : (λ, y) 7→ σ(λ, y) is étale in an affine neighborhood U of (λ, x) (the principal open
subset defined by the Jacobian determinant d of the regular mapping). Indeed, ρ is
Ga equivariant with respect to the action onGa×H1 given by (µ, (λ, y)) 7→ (µ+λ, y).
Thus d ∈ C[Ga × Hx]Ga = C[Hx], and U = Ga × Ux with Ux the principal open
subset of Hx defined by d. Identifying Ux with the 0 section of the trivial Ga
bundle, and therefore the quotient of U with respect to the Ga action, the restriction
ρ|Ux : Ux → X/Ga gives an étale morphism. The images of finitely many such

morphisms ρ|Uxi : Uxi → X/Ga cover X/Ga. That qiUxi
ρ|Uxi→ X/Ga provides an

affine étale covering making X/Ga an algebraic space is explained in [11, p. 39].
This description of the quotient as an algebraic space uses the complex structure.

An alternative realization of the quotient of a variety X by a proper action of an
algebraic group G as an algebraic space, valid in any characteristic, is given by
Seshadri. Indeed, the construction is similar, differing in that Seshadri builds a
variety Z finite over X from affine varieties analogous to U above. The action of
G extends to Z and is locally trivial. The quotient W is separated but need not be
quasiprojective. However, C(Z)/C(X) is Galois with group Γ, Γ acts on W , and
the quotient of X by G is the algebraic space W/Γ. For the purposes of this paper
the first description of the quotient is more convenient. For example, we can give
a nice description of the stalks of the structure sheaf of the algebraic space X/Ga.

For a local ring R with maximal ideal m, denote by Rh the henselization of R
and by R̂ its completion at m. Recall that for R equal to the localization of an
affine domain, Rh is the algebraic closure of R in R̂ .

Proposition 3.1. Let z ∈ X/Ga. Then Oz,X/Ga ≡ lim−→(O(U ×X/Ga X)Ga) ∼=
[lim−→(O(U ×X/Ga X))]Ga ∼= (C[x2, ..., xn](x2,...,xn))h, where the limit is taken over
all étale open subsets U → X/Ga of X/Ga.

Proof. The isomorphism between Oz,X/Ga and (C[x2, ..., xn](x2,...,xn))h is clear from
the above construction of X/Ga. It is also clear that lim−→(O(U ×X/Ga X)Ga) maps
injectively into [lim−→(O(U ×X/Ga X))]Ga . Take h ∈ (lim−→O(U ×X/Ga X))Ga . Because
the action is proper, we can find an étale open V → X/Ga of X/Ga with V affine
and V ×X/Ga X equivariantly isomorphic to V × C with h represented by some
element h ∈ O(V ×C). Because h is Ga invariant, for each λ ∈ Ga there is an open
subset Vλ ×C ⊂ V ×C with λ(h)|Vλ×C = h|Vλ×C. But then the cyclic subgroup
of Ga generated by λ stabilizes h on Vλ × C. The stabilizer of h is an algebraic
subset of Ga and is therefore all of Ga for any λ 6= 0. Thus h ∈ O(V ×C)Ga and
the image of h in lim−→(O(U ×X/Ga X)Ga) is the desired preimage of h. �

Example 1. The action on X = C5 determined by the locally nilpotent derivation
of C[x1, x2, y1, y2, z], namely

δ : x2 7→ x1 7→ 0, y2 7→ y1 7→ 0, z 7→ (1 + x1y
2
2),

is proper. Its quotient is an algebraic space that is not a scheme [5]. In particular,
W, as in Seshadri’s construction above, is not quasiprojective.
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The ring of invariants C0 is generated by the five polynomials

c1 = x1,
c2 = x2,
c3 = x1y2 − x2y1,
c4 = 3y1z − x1y

3
2 − 3y2,

c5 = x2
1c4+c33+3x1c3

y1 .

Set Y = Spec C[c1, c2, c3, c4, c5], and let π : X → Y be the morphism defined
by the rings inclusion. One checks that the C0 ideal

√
C0 ∩ im(δ) = (c1, c2, c3) has

height 2, and that [C0 ∩ im(δ)]C[X ] = (x1, y1). The singular locus S of Y is one
dimensional, properly contained in the zeros locus Z of (c1, c2, c3), and π(π−1(Z)) ⊂
S. π|X−π−1(Z) is a quotient morphism, but fibers over points in S are all two
dimensional.

In general, for a proper action with finitely generated C0, the universal property
for geometric quotients yields a morphism of algebraic spaces π : X/Ga → Y that
is an isomorphism outside of a closed subset of codimension 2 in X/Ga and Y
(the zero loci of (c1, c2) in the respective spaces). Note that C[Y ] is a unique
factorization domain (UFD), so that if X/Ga had the structure of a variety, π
would be an isomorphism into its image [18, Prop. 1, p. 289]. In our example,
however, the completions (and henselizations) of the local rings over points in S do
not retain the unique factorization domain property.

To see this, we rely on the paper [15] where it is shown that the localization
of the UFD A = C[X,Y, Z, T ]/(XY − ZT + X3 + Y 3) at the maximal ideal gen-
erated by the classes of X,Y, Z, T does not remain a UFD upon completion. In
fact, the completion Â is shown to be isomorphic to C[[X,Y, Z, T ]]/(XY − ZT ),
i.e., X3 + Y 3 ∈ (XY − ZT ) C[[X,Y, Z, T ]]. In the example above, C[Y ] ∼=
C[C1, C2, C3, C4, C5]/(C2C5 − C2

1C4 − C3
3 − 3C1C3). With a simple change of

variables (replacing C3 by 3C3) and the observation that C3
1 + C3

3 ∈ (C2C5 −
C1C3)C[[C1, C2, C3, C5]], we can realize the completion of C[Y ] at the maximal
ideal (C1, C2, C3, C4, C5) as isomorphic to C[[C1, C2, C3, C4, C5]] /(C2C5 − C1K)
for some K.

Lemma 1. Let A be the localization of a finitely generated domain over C at the
maximal ideal m. Then the henselization Ah of A is a unique factorization domain
if and only if the completion Â of A is.

Proof. In this context, the henselization and strict henselization of A are equal and
Âh ∼= Â [19, p. 38]. From [3] (proof of Theorem 1), we have C(Ah) = C(Â), where
C(−) denotes the divisor class group. �

Lemma 2. Let Ga act properly on X = Cn with geometric quotient the algebraic
space X/Ga. Assume that C0 = C[X ]Ga is finitely generated defining the affine
variety Y. Denote by q the morphism X → Y induced by the ring inclusion, by π
the quotient morphism X → X/Ga, and by π the canonical morphism X/Ga → Y.
For z ∈ X/Ga, let Kz be the quotient field of the stalk at z of the structure sheaf
of X/Ga, and let Fπ(z) be the quotient field of the henselization of C0,m

π(z)
. Then

π induces an isomorphism of Fπ(z) and Kz.

Proof. If the action is locally trivial in the Zariski topology, then there is nothing to
show (note that since Y is a variety, O

π(z),Y is the henselization of C0,m
π(z)

). If the
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action is not Zariski locally trivial, then it is nevertheless geometrically irreducible
in codimension one (GICO) [7], i.e., the intersection of the kernel and image of the
generating derivation δ lies in no height one prime ideal of C[X ] (or of C0). As
a consequence, there is a closed subset Z of codimension precisely 2 in Y so that
π−1(Z) has codimension 2 in X , and q : X − π−1(Z) → Y − Z is a principal Ga
bundle, locally trivial in the Zariski topology with quotient Y −Z [6, (and Theorem
4.2 below) below]. By the uniqueness of geometric quotients, Y −Z ∼= X/Ga−π−1Z.
The result follows by appealing to an affine étale covering of X/Ga enabling the
reduction to an affine neighborhood U of z. A rational function on U representing
an element of Kz is clearly in the function field of Y at π(z). �

Theorem 3.2. Consider a proper action of Ga on X = Cn with finitely generated
ring of invariants C0 defining the affine variety Y and morphism q : X → Y . The
action is locally trivial with quasiaffine quotient if and only if for each x ∈ X the
completion of the local ring of q(x) on Y is a unique factorization domain.

Proof. If the action is locally trivial, then q is a flat morphism (in the Zariski
topology) whose image is in the smooth locus of Y.

To prove the converse, the argument is essentially that of [18, p. 289, Proposition
1]. Let y = q(x), m the corresponding maximal ideal of C0 and A = C0m. If y
is a smooth point of Y , then the action is locally trivial in an affine neighborhood
of q−1(y) [7]; so assume that Y is singular at y. From Lemma 3.2, we know that
Ah is a unique factorization domain. Since the action is proper, X/Ga exists as
an algebraic space. Let π(z) = y for z ∈ X/Ga, and denote by B = Oz ,X/Ga .

Since X/Ga is smooth but Y is singular at y, we can view Ah as a proper subring
of B. If ϕ ∈ B − A, from Lemma 3.3, ϕ = r

s , r, s ∈ Ah. By choosing a suitable
affine neighborhood of y, we can assume that there is a morphism of affine varieties
π : V →W , subvarieties W1,W2 of W (the zero loci of r and s), whose intersection
has pure codimension 2 in W, and a subvariety V1 of V (the zero locus of s) of
codimension 1. Since r = ϕs, every component of V1 maps to W1 ∩ W2. In
particular, the set of points at which π is not an isomorphism has codimension 1,
a contradiction. �

Problem 1. For which actions does C0,m remain a unique factorization domain
upon completion? In particular, does this hold for proper actions on C4?

4. Remarks

Related to Lemma 3.2 we have the following.

Proposition 4.1. Let k be a field of characteristic 0 and A an affine k algebra
satisfying the following conditions:

(1) A is a unique factorization domain;
(2) with T denoting an indeterminate, A[[T ]] is a unique factorization domain

(i.e., A has discrete divisor class group, e.g. A is a regular UFD);
(3) Ga = Ga(k) acts on A via the locally nilpotent derivation d with kernel Ad.

Then Ad satisfies Serre’s S3 condition.

Proof. Consider the extensionD of the derivation to A[[T ]], defined by D
∑∞

i=0 aiT
i

=
∑∞
i=0 d(ai)T i, and the extension of the Ga action by σt

∑∞
i=0 aiT

i =∑∞
i=0 exp(td)(ai)T i for each element t ∈ k. It is straightforward to check that
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A[[T ]]Ga = A[[T ]]D = Ad[[T ]] = AGa [[T ]]. Moreover, A[[T ]]Ga is factorially closed
in A[[T ]]. Indeed, suppose that a ∈ A[[T ]]Ga has the factorization a = a1a2...ak
in A[[T ]]. Then Ga permutes the ideals (ai) inducing a homomorphism from Ga
to the symmetric group on k letters. However, only the trivial homomorphism
exists, so that σt(ai)= λ(t)ai where λ : Ga → A[[T ]]∗. Comparing coefficients of
T j, we find that (λ(t) − 1)ai =

∑N
j=1

tj

j! d
j(ai), where N + 1 is the least power of

d annihilating ai. Note that dN annihilates
∑N

j=1
tj

j! d
j(ai). Unless λ(t) = 1, we

obtain a contradiction. Thus each ai ∈ A[[T ]]Ga , and therefore this ring is a unique
factorization domain. Thus Ad has discrete divisor class group and consequently
satisfies Serre’s condition S3 [13] . �

Theorem 4.2. Let X be a smooth factorial quasiaffine variety. Suppose that Ga
acts algebraically on X and that O(X)Ga is finitely generated over C. If dim X ≤
5, then O(X)Ga is Gorenstein.

Proof. Since O(X)Ga has dimension at most 4 and satisfies S3, [17, Corollary 1.8]
shows that all of its localizations are Gorenstein. �

The proposition also enables a strengthening of [6, Theorem 3.1] by removing
the Cohen-Macaulay hypothesis on the ring of invariants.

Theorem 4.3. Let X be a smooth factorial complex affine variety of dimension
n ≥ 4 with a GICO Ga action generated by the locally nilpotent derivation δ of
O(X). If O(X)Ga is finitely generated and the height of the ideal image(δ)∩ O(X)Ga
is at least 3, then the action is equivariantly trivial.

Proof. Let P be a prime ideal of O(X)Ga minimal over image(δ)∩ O(X)Ga . Set R =
O(X)GaP , denote the closed point of Spec R by M, and let U = Spec R−{M}. The
Cohen-Macaulay hypothesis was used to show that Ext1(OU , OU ) ∼= H2

M (W,OW ) =
0. But this follows from the S3 condition. �

Greuel and Pfister have conjectured [8] that any proper action of a unipotent
group on an affine scheme X lifts to locally trivial action on some étale covering
of X. If by étale covering one means a finite étale morphism, then the conjecture
fails for X = Cn and the connected unipotent group by the simple conectivity of
Cn [10]. Indeed, suppose X =

⋃m
i=1 Xi, with qi : Xi

∼= X for each i. Connectivity
implies that each orbit will lie in exactly one Xi so that the action is locally trivial
on Xi and qi is Ga equivariant (i.e., the action was already locally trivial on X).
On the other hand, if one drops the finiteness requirement, then section 3 indicates
why the conjecture does hold for X = Cn and proper Ga actions.
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