Triangular $G_{a}$ actions on $\mathbf {C}^{4}$
HTML articles powered by AMS MathViewer
- by James K. Deveney, David R. Finston and Peter van Rossum
- Proc. Amer. Math. Soc. 132 (2004), 2841-2848
- DOI: https://doi.org/10.1090/S0002-9939-04-07500-8
- Published electronically: June 2, 2004
- PDF | Request permission
Abstract:
Every locally trivial action of the additive group of complex numbers on four-dimensional complex affine space that is given by a triangular derivation is conjugate to a translation. A criterion for a proper action on complex affine $n$-space to be locally trivial is given, along with an example showing that the hypotheses of the criterion are sharp.References
- Arno van den Essen, An algorithm to compute the invariant ring of a $\textbf {G}_a$-action on an affine variety, J. Symbolic Comput. 16 (1993), no. 6, 551–555. MR 1279532, DOI 10.1006/jsco.1993.1062
- Daniel Daigle and Gene Freudenburg, Triangular derivations of $\mathbf k[X_1,X_2,X_3,X_4]$, J. Algebra 241 (2001), no. 1, 328–339. MR 1838855, DOI 10.1006/jabr.2001.8763
- V. I. Danilov, Rings with a discrete group of divisor classes, Mat. Sb. (N.S.) 88(130) (1972), 229–237 (Russian). MR 0306184
- James K. Deveney, David R. Finston, and Mai Gehrke, $\textbf {G}_a$ actions on $\mathbf C^n$, Comm. Algebra 22 (1994), no. 12, 4977–4988. MR 1285720, DOI 10.1080/00927879408825115
- James K. Deveney and David R. Finston, A proper $\textbf {G}_a$ action on $\textbf {C}^5$ which is not locally trivial, Proc. Amer. Math. Soc. 123 (1995), no. 3, 651–655. MR 1273487, DOI 10.1090/S0002-9939-1995-1273487-0
- James K. Deveney and David R. Finston, $\mathbf G_a$ invariants and slices, Comm. Algebra 30 (2002), no. 3, 1437–1447. MR 1892608, DOI 10.1081/AGB-120004880
- James K. Deveney and David R. Finston, Regular $G_a$ invariants, Osaka J. Math. 39 (2002), no. 2, 275–282. MR 1914293
- Gert-Martin Greuel and Gerhard Pfister, Geometric quotients of unipotent group actions. II, Singularities (Oberwolfach, 1996) Progr. Math., vol. 162, Birkhäuser, Basel, 1998, pp. 27–36. MR 1652466
- James K. Deveney and David R. Finston, Local triviality of proper $\textbf {G}_a$ actions, J. Algebra 221 (1999), no. 2, 692–704. MR 1728405, DOI 10.1006/jabr.1997.8028
- David Wright, On the Jacobian conjecture, Illinois J. Math. 25 (1981), no. 3, 423–440. MR 620428
- Herbert Popp, Moduli theory and classification theory of algebraic varieties, Lecture Notes in Mathematics, Vol. 620, Springer-Verlag, Berlin-New York, 1977. MR 0466143, DOI 10.1007/BFb0067436
- Harald Holmann, Komplexe Räume mit komplexen Transformations-gruppen, Math. Ann. 150 (1963), 327–360 (German). MR 150789, DOI 10.1007/BF01470762
- Joseph Lipman, Unique factorization in complete local rings, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 531–546. MR 0374125
- Jörg Winkelmann, On free holomorphic $\bf C$-actions on $\textbf {C}^n$ and homogeneous Stein manifolds, Math. Ann. 286 (1990), no. 1-3, 593–612. MR 1032948, DOI 10.1007/BF01453590
- Elena Halanay, An example of a unique factorization domain whose completion is not a unique factorization domain, Stud. Cerc. Mat. 30 (1978), no. 5, 495–497 (Romanian, with English summary). MR 518249
- P. van Rossum: Tackling Problems on Affine Space with Locally Nilpotent Derivations on Polynomial Rings, Thesis, Catholic University Nijmegen, 2001.
- Robin Hartshorne and Arthur Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra 1 (1974), 415–437. MR 347821, DOI 10.1080/00927877408548627
- David Mumford, The red book of varieties and schemes, Second, expanded edition, Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians; With contributions by Enrico Arbarello. MR 1748380, DOI 10.1007/b62130
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
Bibliographic Information
- James K. Deveney
- Affiliation: Department of Mathematical Sciences, Virginia Commonwealth University, 1015 W. Main St., Richmond, Virginia 23284
- Email: jdeveney@atlas.vcu.edu
- David R. Finston
- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
- Email: dfinston@nmsu.edu
- Peter van Rossum
- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
- Email: petervr@nmsu.edu
- Received by editor(s): July 25, 2002
- Published electronically: June 2, 2004
- Communicated by: Bernd Ulrich
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 2841-2848
- MSC (2000): Primary 14L30; Secondary 20G20
- DOI: https://doi.org/10.1090/S0002-9939-04-07500-8
- MathSciNet review: 2063101