Cellular generators
HTML articles powered by AMS MathViewer
- by Wojciech Chachólski, Paul-Eugene Parent and Donald Stanley
- Proc. Amer. Math. Soc. 132 (2004), 3397-3409
- DOI: https://doi.org/10.1090/S0002-9939-04-07346-0
- Published electronically: June 16, 2004
- PDF | Request permission
Abstract:
The aim of this paper is twofold. On the one hand, we show that the kernel $\overline {C(A)}$ of the Bousfield periodization functor $P_A$ is cellularly generated by a space $B$, i.e., we construct a space $B$ such that the smallest closed class $C(B)$ containing $B$ is exactly $\overline {C(A)}$. On the other hand, we show that the partial order $(Spaces,\gg )$ is a complete lattice, where $B\gg A$ if $B\in C(A)$. Finally, as a corollary we obtain Bousfield’s theorem, which states that $(Spaces,>)$ is a complete lattice, where $B>A$ if $B\in \overline {C(A)}$.References
- A. K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831–873. MR 1257059, DOI 10.1090/S0894-0347-1994-1257059-7
- A. K. Bousfield, Homotopical localizations of spaces, Amer. J. Math. 119 (1997), no. 6, 1321–1354. MR 1481817
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Wojciech Chachólski, Closed classes, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 95–118. MR 1397724, DOI 10.1007/978-3-0348-9018-2_{7}
- Wojciech Chachólski, On the functors $CW_A$ and $P_A$, Duke Math. J. 84 (1996), no. 3, 599–631. MR 1408539, DOI 10.1215/S0012-7094-96-08419-7
- Krzysztof Ciesielski, Set theory for the working mathematician, London Mathematical Society Student Texts, vol. 39, Cambridge University Press, Cambridge, 1997. MR 1475462, DOI 10.1017/CBO9781139173131
- Edward B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107–209 (1971). MR 279808, DOI 10.1016/0001-8708(71)90015-6
- E. Dror Farjoun, Cellular inequalities, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 159–181. MR 1320991, DOI 10.1090/conm/181/02033
- Emmanuel Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996. MR 1392221, DOI 10.1007/BFb0094429
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432
Bibliographic Information
- Wojciech Chachólski
- Affiliation: Yale University, Department of Mathematics, 10 Hillhouse Avenue, P.O. Box 208283, New Haven, Connecticut 06520-8283
- Address at time of publication: KTH Matematik, S-10044 Stockholm, Sweden
- Email: chachols@math.yale.edu
- Paul-Eugene Parent
- Affiliation: Université catholique de Louvain, Département de mathméatiques, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgique
- Address at time of publication: KTH Matematik, S-10044 Stockholm, Sweden
- Email: parent@agel.ucl.ac.be
- Donald Stanley
- Affiliation: University of Alberta, Department of Mathematical Sciences, 632 Central Academic Building, Edmonton, Alberta, T6G 2G1, Canada
- Address at time of publication: Department of Mathematics and Statistics, University of Regina, College West, 30714 Regina, Saskatchewan, Canada
- MR Author ID: 648490
- Email: stanley@math.ualberta.ca
- Received by editor(s): November 1, 2000
- Received by editor(s) in revised form: January 1, 2001
- Published electronically: June 16, 2004
- Additional Notes: The first author was partially supported by the NSF grant DMS-9803766
This work has been partly supported by the Volkswagenstiftung Oberwolfach - Communicated by: Paul Goerss
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 3397-3409
- MSC (2000): Primary 55Q05
- DOI: https://doi.org/10.1090/S0002-9939-04-07346-0
- MathSciNet review: 2073317