Mappings of finite distortion: Removable singularities for locally homeomorphic mappings

Author:
Kai Rajala

Journal:
Proc. Amer. Math. Soc. **132** (2004), 3251-3258

MSC (2000):
Primary 30C65

DOI:
https://doi.org/10.1090/S0002-9939-04-07459-3

Published electronically:
May 12, 2004

MathSciNet review:
2073299

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a locally homeomorphic mapping of finite distortion in dimension larger than two. We show that when the distortion of satisfies a certain subexponential integrability condition, small sets are removable. The smallness is measured by a weighted modulus.

**1.**S. Agard and A. Marden:*A removable singularity theorem for local homeomorphisms*, Indiana Univ. Math. J., 20 (1970), 455-461. MR**43:2209****2.**N. S. Dairbekov:*Removable singularities of locally quasiconformal mappings*, Siberian Math. J., 33 (1992), no. 1, 159-161. MR**93d:30029****3.**T. Iwaniec, P. Koskela, G. Martin, and C. Sbordone:*Mappings of finite distortion: -integrability*, J. London Math. Soc. (2), 67 (2003), no. 1, 123-136. MR**2003h:30031****4.**T. Iwaniec, P. Koskela, and J. Onninen:*Mappings of finite distortion: Monotonicity and continuity*, Invent. Math. 44 (2001), no. 3, 507-531. MR**2002c:30029****5.**T. Iwaniec, P. Koskela, and J. Onninen:*Mappings of finite distortion: Compactness*, Ann. Acad. Sci. Fenn. Math., 27 (2002), no. 2, 391-417. MR**2004b:30045****6.**T. Iwaniec and G. Martin:*Geometric Function Theory and Nonlinear Analysis*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR**2003c:30001****7.**J. Kauhanen, P. Koskela, and J. Malý:*Mappings of finite distortion: Discreteness and openness*, Arch. Rational Mech. Anal., 160 (2001), 135-151. MR**2002m:30023****8.**J. Kauhanen, P. Koskela, and J. Malý:*Mappings of finite distortion: Condition N*, Michigan Math. J., 49 (2001), no. 1, 169-181. MR**2002d:30027****9.**J. Kauhanen, P. Koskela, J. Malý, J. Onninen, and X. Zhong:*Mappings of finite distortion: Sharp Orlicz-conditions*, Preprint 239, Department of Mathematics and Statistics, University of Jyväskylä, 2001.**10.**P. Koskela and J. Onninen:*Mappings of finite distortion: Capacity and modulus inequalities*, Preprint 257, Department of Mathematics and Statistics, University of Jyväskylä, 2002.**11.**P. Koskela and K. Rajala:*Mappings of finite distortion: Removable singularities*, Israel J. Math., 136 (2003), 269-283.**12.**J. Malý:*Lectures on change of variables in integral*, Graduate School in Helsinki, 2001.**13.**O. Martio, S. Rickman, and J. Väisälä:*Distortion and singularities of quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A I Math., 465 (1970), 1-13. MR**42:1995****14.**O. Martio, S. Rickman, and J. Väisälä:*Topological and metric properties of quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A I Math., 488 (1971), 1-31. MR**45:8830****15.**Yu. G. Reshetnyak:*Space Mappings with Bounded Distortion*, Transl. of Mathematical Monographs, vol. 73, Amer. Math. Soc., Providence, RI, 1989. MR**90d:30067****16.**S. Rickman:*Quasiregular mappings*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 26, Springer-Verlag, Berlin, 1993. MR**95g:30026****17.**J. Väisälä:*Lectures on -dimensional quasiconformal mappings*, Springer-Verlag, Berlin and New York, 1971. MR**56:12260****18.**V. A. Zorich:*Isolated singularity of mappings with bounded distortion*, Mat. Sb., 81 (123) (1970), no. 4, 634-636; English transl., Math USSR-Sb., 10 (1970), 581-583. MR**42:497**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
30C65

Retrieve articles in all journals with MSC (2000): 30C65

Additional Information

**Kai Rajala**

Affiliation:
University of Jyväskylä, Department of Mathematics and Statistics, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland

Email:
kirajala@maths.jyu.fi

DOI:
https://doi.org/10.1090/S0002-9939-04-07459-3

Received by editor(s):
February 12, 2003

Received by editor(s) in revised form:
July 2, 2003

Published electronically:
May 12, 2004

Additional Notes:
The author was supported by the foundations Magnus Ehrnroothin Säätiö and Vilho, Yrjö ja Kalle Väisälän Rahasto. A part of this research was done when the author was visiting at the University of Michigan. He wishes to thank the department for its hospitality.

Communicated by:
Juha M. Heinonen

Article copyright:
© Copyright 2004
American Mathematical Society