A CRITERION FOR SATELLITE 1-GENUS 1-BRIDGE KNOTS

HIROSHI GODA, CHUICHIRO HAYASHI, AND HYUN-JONG SONG

(Communicated by Ronald A. Fintushel)

Abstract. Let K be a knot in a closed orientable irreducible 3-manifold M. Suppose M admits a genus 1 Heegaard splitting and we denote by H the splitting torus. We say H is a 1-genus 1-bridge splitting of (M, K) if H intersects K transversely in two points, and divides (M, K) into two pairs of a solid torus and a boundary parallel arc in it. It is known that a 1-genus 1-bridge splitting of a satellite knot admits a satellite diagram disjoint from an essential loop on the splitting torus. If $M = S^3$ and the slope of the loop is longitudinal in one of the solid tori, then K is obtained by twisting a component of a 2-bridge link along the other component. We give a criterion for determining whether a given 1-genus 1-bridge splitting of a knot admits a satellite diagram of a given slope or not. As an application, we show there exist counter examples for a conjecture of Ait Nouh and Yasuhara.

1. Introduction

Let M be a closed orientable irreducible 3-manifold, and K a knot in M. We say that K is a 1-genus 1-bridge knot if (M, K) has a 1-genus 1-bridge splitting H, that is, there is a Heegaard splitting torus H of M such that H intersects K transversely in two points and K intersects each of the solid tori bounded by H in a trivial arc. (Here, an arc t embedded in a solid torus V with $t \cap \partial V = \partial t$ is called trivial if it is boundary parallel, that is, there is a disc C in V such that $t \subset \partial C$ and $C \cap \partial V = \partial (\partial C - t)$. We call such a disc C a cancelling disc of t.) The class of 1-genus 1-bridge knots contains all torus knots and 2-bridge knots.

Let $(M, K) = (V_1, t_1) \cup_H (V_2, t_2)$ be a 1-genus 1-bridge splitting, and C_i a cancelling disc of t_i in V_i for $i = 1$ and 2. Set $s_i = \partial C_i \cap H$. Then the overstrand s_1 and the understrand s_2 together give a 1-genus 1-bridge diagram of the splitting. It is a satellite diagram if there is an essential loop ℓ in H with $\ell \cap (s_1 \cup s_2) = \emptyset$. We call the isotopy class of such a loop ℓ in H (rather than $H - K$) a slope of the satellite diagram. A 1-genus 1-bridge splitting admits a satellite diagram if there is such a pair of cancelling discs. See [6], and also [6]. If the slope of a 1-genus

Received by the editors March 17, 2003 and, in revised form, August 11, 2003.

2000 Mathematics Subject Classification. Primary 57M25.

Key words and phrases. 2-bridge link, twisting operation, 1-genus 1-bridge knot, satellite diagram.

This work was supported by Joint Research Project ‘Geometric and Algebraic Aspects of Knot Theory’, under the Japan-Korea Basic Scientific Cooperation Program by KOSEF and JSPS. The authors would like to thank Professor Hitoshi Murakami for giving us this opportunity.

©2004 American Mathematical Society
1-bridge satellite diagram is meridional in one of the solid tori V_1 and V_2, then
the knot K is trivial. When the slope is longitudinal on ∂V_i, K can be obtained
from a component of a 2-bridge link by Dehn surgery on the other component,
as is essentially shown in [3]. (In fact, K has a 1-bridge diagram on the annulus
$A = \text{cl}(\partial V_i - N(\ell))$; that is, shrinking C_1 and C_2, we can isotope K to be the union
of an overstrand very near to s_1 and an understrand very close to s_2. We can take
a core of the other solid torus V_j to be disjoint from C_1 and C_2. We perform a
Dehn surgery on the core so that ∂A bounds two meridian discs Q of the filled solid
torus. Thus K is deformed to be in a 1-bridge position with respect to the 2-sphere
$A \cup Q$.) When $M = S^3$, the Dehn surgery is the same operation as a twisting.

In this paper, we give a criterion for determining whether a given 1-genus 1-
bridge splitting of a knot has a satellite diagram of a given slope or not. Note that
every 1-genus 1-bridge splitting has infinitely many diagrams, since a trivial arc in a
solid torus has infinitely many isotopy classes of cancelling discs. (In fact, a trivial arc t is isotopic in the solid torus V to every arc α in ∂V such that $\partial \alpha = \partial t$ and
such that α is disjoint from a meridian disc D of V with $D \cap t = \emptyset$. See Lemma 2.5
in [6].) A 1-genus 1-bridge diagram of a satellite knot is not always satellite even
if the overstrand and the understrand intersect each other in a minimal number of
points up to isotopy in H fixing their endpoints. See Figure 1 where a cable knot of the trefoil knot is described. In fact, the projection of the arc t_1 is isotopic in V_1
to the straight line connecting the two points $H \cap K$.

However, the Heegaard diagram of a 1-genus 1-bridge splitting is unique up to
homeomorphism for the homeomorphism class of the splitting. Here the Heegaard
diagram is a pair of isotopy classes of meridian loops m_1 and m_2 of V_1 and V_2 in the
twice punctured torus $H - K$ such that m_i bounds a meridian disc disjoint from t_i
in V_i. (Note that such a meridian disc is unique up to isotopy of the pair (V_i, t_i).
See Lemma 2.4 in [6].) We can easily obtain the Heegaard diagram from a 1-genus
1-bridge diagram. We use Heegaard diagrams in our criterion instead of 1-genus 1-
bridge diagrams.

Theorem 1.1. Let $(M, K) = (V_1, t_1) \cup_H (V_2, t_2)$ be a 1-genus 1-bridge splitting, and
D_i a meridian disc of V_i with $D_i \cap t_i = \emptyset$ for $i = 1$ and 2. Suppose that $\partial D_1 \cap \partial D_2$
is minimized up to isotopy in $H - K$. This splitting has a satellite 1-genus 1-bridge diagram of slope ℓ_0 if and only if there is a simple closed curve ℓ isotopic to ℓ_0 in H such that $\ell \cup \partial D_i$ does not separate the two points $H \cap K$ for $i = 1$ and 2.

Addendum 1.2.

1. In the “only if part”, we can take ℓ so that $|\ell \cap \partial D_i| = |\ell \cdot \partial D_i|$ for $i = 1$ and 2, where $\ell \cdot \partial D_i$ denotes the algebraic intersection number.

2. The “if part” holds even if ∂D_1 and ∂D_2 do not intersect each other in a minimal number of points up to isotopy in $H - K$.

The proof is given in Section 2. We apply this result to torus knots in Section 3, and obtain the next result.

Corollary 1.3. A 1-genus 1-bridge splitting of a torus knot $T(p, q)$ with $q = p + 2$ has a satellite diagram of slope $(1, 1)$. In particular, $T(p, p + 2)$ is obtained from a component of a 2-bridge link in S^3 by twisting along the other component.

This corollary gives counterexamples for a conjecture by Ait Nouh and Yasuhara [1], which says if a torus knot $T(p, q)$ is obtained by twisting a trivial knot, then $q = kp \pm 1$ for some integer k. The type of the 2-bridge link will be given in [2]. Such a 2-bridge link admits infinitely many exceptional Dehn surgeries, since an n-twisting is realized also by a $(-1/n)$-Dehn surgery, and no Dehn surgery on a torus knot yields a hyperbolic 3-manifold.

In Section 4, applying Theorem 1.1, we show that any 1-genus 1-bridge splitting of the torus knot $T(5, 12)$ does not admit a satellite diagram of longitudinal slope of one of the solid tori bounded by the splitting torus. A similar argument works for $T(p, q)$ with $p = 4k + 1$, $q = np + 2$ for $k \geq 1$ and $n \geq 2$.

2. Proof of Theorem 111

We prove Theorem 1.1 and its addendum in this section.

First we prove the “if part”. Since $\ell \cup \partial D_i$ does not separate the two points ∂t_i, there is an arc α_i (in H) such that $\partial \alpha_i = \partial t_i$ and $\alpha_i \cap (\ell \cup \partial D_i) = \emptyset$. Lemma 2.5 in [6] allows us to take a cancelling disc C_i of t_i in V_i so that $C_i \cap H = \alpha_i$. This is because we obtain a ball by cutting V_i along D_i. Thus the discs C_1 and C_2 give a satellite 1-genus 1-bridge diagram disjoint from ℓ.

Now we prove the “only if part”. Suppose that the 1-genus 1-bridge splitting $(M, K) = (V_1, t_1) \cup_H (V_2, t_2)$ has a satellite diagram with slope ℓ. Then there is a cancelling disc C_i of t_i in V_i such that the arc $s_i = C_i \cap H$ is disjoint from ℓ for $i = 1$ and 2. We can assume that C_1 and C_2 are isotoped so that s_1 and s_2 intersect each other in a minimal number of points. Let A be the annulus obtained by cutting H along ℓ. For $i = 1$ and 2, we will find a meridian disc D_i of V_i with $D_i \cap t_i = \emptyset$ and with the following properties:

1. ∂D_i either intersects A in essential arcs, or is entirely contained in $\text{int} A$.
2. $\ell \cup \partial D_i$ is disjoint from the arc s_j for $i = 1$ and 2.
3. $\partial D_i \cup s_j$ has no bigon in $H - K$ for $(i, j) = (1, 2)$ and $(2, 1)$.
4. $\partial D_1 \cap \partial D_2$ is minimized up to isotopy of D_1 and D_2 in (V_i, t_i).

Condition (2) implies that $\ell \cup \partial D_i$ does not separate the two points $H \cap K$, since s_i connects them and is disjoint from $\ell \cup \partial D_i$. If such discs are found, then Theorem 1.1 follows from uniqueness of the isotopy class of meridian discs disjoint from the
trivial arc (see Lemma 2.4 in [?]). Note that the union $\partial D_1 \cup \partial D_2$ is also unique up to isotopy in $(H, K \cap H)$ if ∂D_1 and ∂D_2 intersect each other minimally. Hence, it is sufficient to find such a pair of discs D_1 and D_2, although Theorem 1.1 is stated for every pair of discs D_1 and D_2 such that their boundary circles intersect each other minimally. Condition (1) implies Addendum 1.2 (1).

First, we take a meridian disc D'_i of V_i so that it satisfies condition (1). D'_i may intersect t_i and s_i. Then we isotope D'_i near $\partial D'_i$ along subarcs of s_i so that it satisfies condition (2). Condition (1) is kept during this operation, because s_i is disjoint from ℓ. Next we will isotope D'_j so that it satisfies condition (3). Suppose that $\partial D'_i \cup s_j$ has a bigon in $H - K$. Note that the bigon face Q is disjoint from ℓ by the conditions $s_j \cap \ell = \emptyset$ and (1). The disc Q is disjoint also from s_i, because of condition (2) and the condition that $s_i \cap s_j$ is minimal. Hence we can isotope D'_i near its boundary in (V_i, t_i) along the disc Q slightly beyond the arc $Q \cap s_j$. This reduces the number of intersection points $\partial D'_i \cap s_j$ by two. By repeating such operations, we can deform D'_i so that it satisfies condition (3). Finally, we isotope D'_1 and D'_2 so that they satisfy condition (4). If their boundary circles do not intersect each other minimally, then $\partial D'_1 \cup \partial D'_2$ has a bigon R in $H - K$. See [2]. For $i = 1$ and 2, R is disjoint from s_i by conditions (2) and (3). The circle ℓ intersects R in subarcs. Each such subarc connects the arcs $\partial D'_i \cap R$ and $\partial D'_j \cap R$ because of condition (1). We isotope D'_i near its boundary along the disc R slightly beyond the arc $\partial D'_2 \cap R$. During the isotopy, conditions (1), (2) and (3) are kept. Repeating this process, we can deform D'_1 and D'_2 so that it satisfies condition (4). We isotope t_i along C_i to be very close to s_i and disjoint from D'_i. Thus we have obtained the desired pair of discs D_1 and D_2. \square

3. Proof of Corollary 1.3

We prove Corollary 1.3 in this section.

By Theorem 3 in [7], all the 1-genus 1-bridge splitting tori of a torus knot are isotopic. Hence it is enough to show that, for a certain 1-genus 1-bridge splitting, the $(p, p + 2)$-torus knot has a satellite diagram of slope $(1, 1)$.

Let K be the $(p, p + 2)$-torus knot in S^3. It is entirely contained in a standard torus H which divides S^3 into two solid tori V_1 and V_2 such that K goes around p times longitudinally in V_1 and $p + 2$ times in V_2. There is a circle ℓ of slope $(1, 1)$ in H such that ℓ intersects K in precisely two points x and y. Let D_i be a meridian disc of V_i for $i = 1$ and 2. We can take D_1 so that its boundary intersects ℓ only in the point x and K in p points, one of which is x. We can take D_2 so that its boundary is away from x and y and intersects ∂D_1 in one point, ℓ in one point z, and K in $p + 2$ points. x is the only triple intersection point of ∂D_1, ∂D_2, K, and ℓ. See Figure 2. Let s_2 be a very short subarc of K near x, and s_1 the complementary arc $\text{cl}(K - s_2)$. Because ∂D_2 is away from x, it is disjoint from the arc s_2. Among the $p + 1$ subarcs of s_1 obtained by cutting s_1 at the p points $(s_1 \cap \partial D_1) \cup y$, there is an arc α connecting a point of $s_1 \cap \partial D_1$ and a point of ∂s_1. Note that α is disjoint from y. We isotope D_1 near its boundary along the arc α on the torus H. Repeating this operation, we obtain D'_1 from D_1 such that $\partial D'_1$ is disjoint from s_1. Since s_1 is disjoint from x, $\partial D'_1$ intersects ℓ only in the single point x. Hence $\ell \cup \partial D'_1$ does not separate the two points $H \cap K$ (though s_1 intersects ℓ in the point y). We call this D'_1 simply D_1 again. Moreover, ∂D_2 intersects ℓ only in the single point z, so $\ell \cup \partial D_2$ does not separate the two points $H \cap K$ (though s_2 intersects
ℓ in the point x). We push the interior of the arc si into the interior of Vi, to form a trivial arc ti in Vi for i = 1 and 2. Note that K is isotopic to t1 ∪ t2, and that ti is disjoint from Di. Thus H gives a 1-genus 1-bridge splitting of K = t1 ∪ t2, and D1 and D2 together give a Heegaard diagram of this splitting such that ℓ ∪ ∂Di does not separate the two points H ∩ K = ∂ti for i = 1 and 2. Theorem A with Addendum 1.2(2) implies that K has a satellite diagram of slope ℓ. □

4. Proof of Having No Satellite Diagram of Longitudinal Slope

In this section, we show that the torus knot $K = T(5, 12)$ does not have a 1-genus 1-bridge splitting which admits a satellite diagram of longitudinal slope of one of the solid tori.

Let $(S^3, K) = (V_1, t_1) \cup (V_2, t_2)$ be a 1-genus 1-bridge splitting. By Theorem 3 in [7], there are cancelling discs C_1, C_2 of t_1, t_2 in V_1, V_2 such that $C_1 \cap C_2 = H \cap K$. Set $C_i \cap H = s_i$, the arc for $i = 1$ and 2. Then $L = s_1 \cup s_2$ forms a simple closed curve isotopic to K. On one of the solid tori, say V_1, L goes around 5 times longitudinally, and on the other solid tori V_2, 12 times longitudinally. We will show that this splitting does not admit a satellite diagram of longitudinal slope of V_2.

Let D'_1 be a meridian disc of V_1 such that $\partial D'_1$ intersects s_1 transversely in a single point x_0 and s_1 in 4 points x_1, x_2, x_3, x_4 which appear on $\partial D'_1$ in this order. We take a meridian disc D_2 of V_2 so that:

1. ∂D_2 is disjoint from s_2;
2. ∂D_2 intersects s_1 transversely in 12 points y_1, \ldots, y_{12} appearing on ∂D_2 in this order;
3. ∂D_2 intersects $\partial D'_1$ in a single point y_0 between the points y_{12} and y_1 and between the points x_2 and x_3;
4. the subarc of L between x_0 and y_3 contains a point x_+ of $H \cap K$; and
5. the subarc of L between x_0 and y_{10} contains a point x_- of $H \cap K$.

See Figure 3 where the torus H cut along ∂D_2 is described.

We form a Heegaard diagram of this splitting. We isotope D'_1 near its boundary along subarcs of s_1 between x_2 and x_+ and between x_4 and x_+. See Figure 4 where subarcs of $\partial D'_1$ in (a) are deformed to those in (b). Further, we isotope D'_1 along subarcs of s_1 between x_3 and x_- and between x_1 and x_- similarly.

After these isotopies, D'_1 is transformed into a disc D_1 whose boundary is disjoint from the arc s_1. We schematically describe ∂D_1 as in Figure 4(c), which implies ∂D_1 contains 2 subarcs parallel to the segment from x_4 to x_2 and 4 subarcs parallel to the segment from x_2 to x_+. We call these subarcs multiplied subarcs of s_1 in the following.
The circles ∂D_1 and ∂D_2 together give a Heegaard diagram of the 1-genus 1-bridge splitting. This diagram is minimal; that is, $\partial D_1 \cup \partial D_2$ has no bigon in $H - K$. See Figure 5.

By Theorem 1.1 and Addendum 1.2 (1), it is sufficient to confirm that there is no circle ℓ such that ℓ intersects ∂D_2 in a single point, say z, and $|\ell \cap \partial D_1| = |\ell \cdot \partial D_1|$. We orient the circle ∂D_1 arbitrarily. Then every multiplied subarc of s_1 contains a pair of anti-parallel subarcs of ∂D_1.

In Figure 6 the multiplied subarc of s_1 between y_7 and y_{12} and that between y_{12} and y_5 together separate the 2 copies of the corner of ∂D_2 between y_7 and y_{12} (via y_8). Hence the point $z = \ell \cap \partial D_2$ cannot be between y_7 and y_{12} (via y_8). (Otherwise, ℓ must intersect a multiplied subarc of s_1, and then intersects ∂D_1 in more than $|\ell \cdot \partial D_1|$ points.) Similarly, the point z cannot be between y_{12} and y_5 (via...
y_0). Considering the multiplied subarc of s_1 between y_1 and y_8 and that between y_3 and y_8, we can see that z cannot be between y_3 and y_8 (via y_4) nor between y_8 and y_1 (via y_6). Hence z can be nowhere, and there is no such ℓ.

References

3. H. Goda, C. Hayashi and H. Song, Dehn surgeries on 2-bridge links which yield reducible 3-manifolds, preprint.

Department of Mathematics, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
E-mail address: goda@cc.tuat.ac.jp

Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejiro-dai, Bunkyo-ku, Tokyo, 112-8681, Japan
E-mail address: hayashic@fc.jwu.ac.jp

Division of Mathematical Sciences, Pukyong National University, 599-1 Daeydong, Namgu, Pusan 608-737, Korea
E-mail address: hjsong@pknu.ac.kr