A CRITERION FOR SATELLITE 1-GENUS 1-BRIDGE KNOTS

HIROSHI GODA, CHUICHIRO HAYASHI, AND HYUN-JONG SONG

(Communicated by Ronald A. Fintushel)

Abstract. Let K be a knot in a closed orientable irreducible 3-manifold M. Suppose M admits a genus 1 Heegaard splitting and we denote by H the splitting torus. We say H is a 1-genus 1-bridge splitting of (M, K) if H intersects K transversely in two points, and divides (M, K) into two pairs of a solid torus and a boundary parallel arc in it. It is known that a 1-genus 1-bridge splitting of a satellite knot admits a satellite diagram disjoint from an essential loop on the splitting torus. If $M = S^3$ and the slope of the loop is longitudinal in one of the solid tori, then K is obtained by twisting a component of a 2-bridge link along the other component. We give a criterion for determining whether a given 1-genus 1-bridge splitting of a knot admits a satellite diagram of a given slope or not. As an application, we show there exist counter examples for a conjecture of Ait Nouh and Yasuhara.

1. Introduction

Let M be a closed orientable irreducible 3-manifold, and K a knot in M. We say that K is a 1-genus 1-bridge knot if (M, K) has a 1-genus 1-bridge splitting H, that is, there is a Heegaard splitting torus H of M such that H intersects K transversely in two points and K intersects each of the solid tori bounded by H in a trivial arc. (Here, an arc t embedded in a solid torus V with $t \cap \partial V = \partial t$ is called trivial if it is boundary parallel, that is, there is a disc C in V such that $t \subset \partial C$ and $C \cap \partial V = cl(\partial C - t)$. We call such a disc C a cancelling disc of t.) The class of 1-genus 1-bridge knots contains all torus knots and 2-bridge knots.

Let $(M, K) = (V_1, t_1) \cup_H (V_2, t_2)$ be a 1-genus 1-bridge splitting, and C_i a cancelling disc of t_i in V_i for $i = 1$ and 2. Set $s_i = \partial C_i \cap H$. Then the overstrand s_1 and the understrand s_2 together give a 1-genus 1-bridge diagram of the splitting. It is a satellite diagram if there is an essential loop ℓ in H with $\ell \cap (s_1 \cup s_2) = \emptyset$. We call the isotopy class of such a loop ℓ in H (rather than $H - K$) a slope of the satellite diagram. A 1-genus 1-bridge splitting admits a satellite diagram if there is such a pair of cancelling discs. See [1], and also [5]. If the slope of a 1-genus

Received by the editors March 17, 2003 and, in revised form, August 11, 2003.

2000 Mathematics Subject Classification. Primary 57M25.

Key words and phrases. 2-bridge link, twisting operation, 1-genus 1-bridge knot, satellite diagram.

This work was supported by Joint Research Project ‘Geometric and Algebraic Aspects of Knot Theory’, under the Japan-Korea Basic Scientific Cooperation Program by KOSEF and JSPS. The authors would like to thank Professor Hitoshi Murakami for giving us this opportunity.

©2004 American Mathematical Society
1-bridge satellite diagram is meridional in one of the solid tori V_1 and V_2, then the knot K is trivial. When the slope is longitudinal on ∂V_i, K can be obtained from a component of a 2-bridge link by Dehn surgery on the other component, as is essentially shown in [8]. (In fact, K has a 1-bridge diagram on the annulus $A = \text{cl} (\partial V_i - N(\ell))$; that is, shrinking C_1 and C_2, we can isotope K to be the union of an overstrand very near to s_1 and an understrand very close to s_2. We can take a core of the other solid torus V_j to be disjoint from C_1 and C_2. We perform a Dehn surgery on the core so that ∂A bounds two meridian discs Q of the filled solid torus. Thus K is deformed to be in a 1-bridge position with respect to the 2-sphere $A \cup Q$.) When $M = S^3$, the Dehn surgery is the same operation as a twisting.

In this paper, we give a criterion for determining whether a given 1-genus 1-bridge splitting of a knot has a satellite diagram of a given slope or not. Note that every 1-genus 1-bridge splitting has infinitely many diagrams, since a trivial arc in a solid torus has infinitely many isotopy classes of cancelling discs. (In fact, a trivial arc t is isotopic in the solid torus V to every arc α in ∂V such that $\partial \alpha = \partial t$ and such that α is disjoint from a meridian disc D of V with $D \cap t = \emptyset$. See Lemma 2.5 in [8].) A 1-genus 1-bridge diagram of a satellite knot is not always satellite even if the overstrand and the understrand intersect each other in a minimal number of points up to isotopy in H fixing their endpoints. See Figure 1, where a cable knot of the trefoil knot is described. In fact, the projection of the arc t_1 is isotopic in V_1 to the straight line connecting the two points $H \cap K$.

However, the Heegaard diagram of a 1-genus 1-bridge splitting is unique up to homeomorphism for the homeomorphism class of the splitting. Here the Heegaard diagram is a pair of isotopy classes of meridian loops m_1 and m_2 of V_1 and V_2 in the twice punctured torus $H - K$ such that m_i bounds a meridian disc disjoint from t_i in V_i. (Note that such a meridian disc is unique up to isotopy of the pair (V_i, t_i). See Lemma 2.4 in [8].) We can easily obtain the Heegaard diagram from a 1-genus 1-bridge diagram. We use Heegaard diagrams in our criterion instead of 1-genus 1-bridge diagrams.

Theorem 1.1. Let $(M, K) = (V_1, t_1) \cup_{H} (V_2, t_2)$ be a 1-genus 1-bridge splitting, and D_i a meridian disc of V_i with $D_i \cap t_i = \emptyset$ for $i = 1$ and 2. Suppose that $\partial D_1 \cap \partial D_2$
is minimized up to isotopy in $H - K$. This splitting has a satellite 1-genus 1-bridge diagram of slope ℓ_0 if and only if there is a simple closed curve ℓ isotopic to ℓ_0 in H such that $\ell \cup \partial D_i$ does not separate the two points $H \cap K$ for $i = 1$ and 2.

Addendum 1.2.

(1) In the “only if part”, we can take ℓ so that $|\ell \cap \partial D_i| = |\ell \cdot D_i|$ for $i = 1$ and 2, where $\ell \cdot D_i$ denotes the algebraic intersection number.

(2) The “if part” holds even if ∂D_1 and ∂D_2 do not intersect each other in a minimal number of points up to isotopy in $H - K$.

The proof is given in Section 2. We apply this result to torus knots in Section 3, and obtain the next result.

Corollary 1.3. A 1-genus 1-bridge splitting of a torus knot $T(p,q)$ with $q = p + 2$ has a satellite diagram of slope $(1,1)$. In particular, $T(p,p + 2)$ is obtained from a component of a 2-bridge link in S^3 by twisting along the other component.

This corollary gives counterexamples for a conjecture by Ait Nouh and Yasuhara [1], which says if a torus knot $T(p,q)$ is obtained by twisting a trivial knot, then $q = kp \pm 1$ for some integer k. The type of the 2-bridge link will be given in [2]. Such a 2-bridge link admits infinitely many exceptional Dehn surgeries, since an n-twisting is realized also by a $(-1/n)$-Dehn surgery, and no Dehn surgery on a torus knot yields a hyperbolic 3-manifold.

In Section 4, applying Theorem [1.1], we show that any 1-genus 1-bridge splitting of the torus knot $T(5,12)$ does not admit a satellite diagram of longitudinal slope of one of the solid tori bounded by the splitting torus. A similar argument works for $T(p,q)$ with $p = 4k + 1$, $q = np + 2$ for $k \geq 1$ and $n \geq 2$.

2. Proof of Theorem [1.1]

We prove Theorem [1.1] and its addendum in this section.

First we prove the “if part”. Since $\ell \cup \partial D_i$ does not separate the two points ∂t_i, there is an arc α_i (in H) such that $\partial \alpha_i = \partial t_i$ and $\alpha_i \cap (\ell \cup \partial D_i) = \emptyset$. Lemma 2.5 in [6] allows us to take a cancelling disc C_i of t_i in V_i so that $C_i \cap H = \alpha_i$. This is because we obtain a ball by cutting V_i along D_i. Thus the discs C_1 and C_2 give a satellite 1-genus 1-bridge diagram disjoint from ℓ.

Now we prove the “only if part”. Suppose that the 1-genus 1-bridge splitting $(M,K) = (V_1,t_1) \cup_H (V_2,t_2)$ has a satellite diagram with slope ℓ. Then there is a cancelling disc C_i of t_i in V_i such that the arc $s_i = C_i \cap H$ is disjoint from ℓ for $i = 1$ and 2. We can assume that C_1 and C_2 are isotoped so that s_1 and s_2 intersect each other in a minimal number of points. Let A be the annulus obtained by cutting H along ℓ. For $i = 1$ and 2, we will find a meridian disc D_i of V_i with $D_i \cap t_i = \emptyset$ and with the following properties:

1. ∂D_i either intersects A in essential arcs, or is entirely contained in int A.
2. $\ell \cup \partial D_i$ is disjoint from the arc s_i for $i = 1$ and 2.
3. $\partial D_i \cup s_i$ has no bigon in $H - K$ for $(i,j) = (1,2)$ and $(2,1)$.
4. $\partial D_1 \cap \partial D_2$ is minimized up to isotopy of D_1 and D_2 in (V_i,t_i).

Condition (2) implies that $\ell \cup \partial D_i$ does not separate the two points $H \cap K$, since s_i connects them and is disjoint from $\ell \cup \partial D_i$. If such discs are found, then Theorem [1.1] follows from uniqueness of the isotopy class of meridian discs disjoint from the
trivial arc (see Lemma 2.4 in [5]). Note that the union \(\partial D_1 \cup \partial D_2 \) is also unique up to isotopy in \((H, K \cap H)\) if \(\partial D_1 \) and \(\partial D_2 \) intersect each other minimally. Hence, it is sufficient to find such a pair of discs \(D_1 \) and \(D_2 \), although Theorem [14] is stated for every pair of discs \(D_1 \) and \(D_2 \) such that their boundary circles intersect each other minimally. Condition (1) implies Addendum [1.2] (1).

First, we take a meridian disc \(D'_i \) of \(V_i \) so that it satisfies condition (1). \(D'_i \) may intersect \(t_i \) and \(s_i \). Then we isotope \(D'_i \) near \(\partial D'_i \) along subarcs of \(s_i \) so that it satisfies condition (2). Condition (1) is kept during this operation, because \(s_i \) is disjoint from \(\ell \). Next we will isotope \(D'_i \) so that it satisfies condition (3). Suppose that \(\partial D'_i \cup s_j \) has a bigon in \(H - K \). Note that the bigon face \(Q \) is disjoint from \(\ell \) by the conditions \(s_j \cap \ell = \emptyset \) and (1). The disc \(Q \) is disjoint also from \(s_i \), because of condition (2) and the condition that \(s_i \cap s_j \) is minimal. Hence we can isotope \(D'_i \) near its boundary in \((V_i, t_i)\) along the disc \(Q \) slightly beyond the arc \(Q \cap s_j \). This reduces the number of intersection points \(\partial D'_i \cap s_j \) by two. By repeating such operations, we can deform \(D'_i \) so that it satisfies condition (3). Finally, we isotope \(D'_i \) and \(D'_2 \) so that they satisfy condition (4). If their boundary circles do not intersect each other minimally, then \(\partial D'_i \cup \partial D'_2 \) has a bigon \(R \) in \(H - K \). See [2]. For \(i = 1 \) and 2, \(R \) is disjoint from \(s_i \) by conditions (2) and (3). The circle \(\ell \) intersects \(R \) in subarcs. Each such subarc connects the arcs \(\partial D'_i \cap R \) and \(\partial D'_2 \cap R \) because of condition (1). We isotope \(D'_i \) near its boundary along the disc \(R \) slightly beyond the arc \(\partial D'_2 \cap R \). During the isotopy, conditions (1), (2) and (3) are kept. Repeating this process, we can deform \(D'_1 \) and \(D'_2 \) so that it satisfies condition (4). We isotope \(t_i \) along \(C_i \) to be very close to \(s_i \) and disjoint from \(D'_i \). Thus we have obtained the desired pair of discs \(D_1 \) and \(D_2 \).

3. Proof of Corollary 1.3

We prove Corollary 1.3 in this section.

By Theorem 3 in [7], all the 1-genus 1-bridge splitting tori of a torus knot are isotopic. Hence it is enough to show that, for a certain 1-genus 1-bridge splitting, the \((p, p + 2)\)-torus knot has a satellite diagram of slope \((1, 1)\).

Let \(K \) be the \((p, p + 2)\)-torus knot in \(S^3 \). It is entirely contained in a standard torus \(H \) which divides \(S^3 \) into two solid tori \(V_1 \) and \(V_2 \) such that \(K \) goes around \(p \) times longitudinally in \(V_1 \) and \(p + 2 \) times in \(V_2 \). There is a circle \(\ell \) of slope \((1, 1)\) in \(H \) such that \(\ell \) intersects \(K \) in precisely two points \(x \) and \(y \). Let \(D_i \) be a meridian disc of \(V_i \) for \(i = 1 \) and 2. We can take \(D_1 \) so that its boundary intersects \(\ell \) only in the point \(x \) and \(K \) in \(p \) points, one of which is \(x \). We can take \(D_2 \) so that its boundary is away from \(x \) and \(y \) and intersects \(\partial D_1 \) in one point, \(\ell \) in one point \(z \), and \(K \) in \(p + 2 \) points. \(x \) is the only triple intersection point of \(\partial D_1, \partial D_2, K, \) and \(\ell \). See Figure 2. Let \(s_2 \) be a very short subarc of \(K \) near \(x \), and \(s_1 \) the complementary arc \(\text{cl}(K - s_2) \). Because \(\partial D_2 \) is away from \(x \), it is disjoint from the arc \(s_2 \). Among the \(p + 1 \) subarcs of \(s_1 \) obtained by cutting \(s_1 \) at the \(p \) points \((s_1 \cap \partial D_1) \cup y \), there is an arc \(\alpha \) connecting a point of \(s_1 \cap \partial D_1 \) and a point of \(\partial s_1 \). Note that \(\alpha \) is disjoint from \(y \). We isotope \(D_1 \) near its boundary along the arc \(\alpha \) on the torus \(H \). Repeating this operation, we obtain \(D'_1 \) from \(D_1 \) such that \(\partial D'_1 \) is disjoint from \(s_1 \). Since \(s_1 \) is disjoint from \(x, \partial D'_1 \) intersects \(\ell \) only in the single point \(x \). Hence \(\ell \cup \partial D'_1 \) does not separate the two points \(H \cap K \) (though \(s_1 \) intersects \(\ell \) in the point \(y \)). We call this \(D'_1 \) simply \(D_1 \) again. Moreover, \(\partial D_2 \) intersects \(\ell \) only in the single point \(z \), so \(\ell \cup \partial D_2 \) does not separate the two points \(H \cap K \) (though \(s_2 \) intersects
\[\ell \text{ in the point } x \). We push the interior of the arc \(s_i \) into the interior of \(V_i \), to form a trivial arc \(t_i \) in \(V_i \) for \(i = 1 \) and 2. Note that \(K \) is isotopic to \(t_1 \cup t_2 \), and that \(t_i \) is disjoint from \(D_i \). Thus \(H \) gives a 1-genus 1-bridge splitting of \(K = t_1 \cup t_2 \), and \(D_1 \) and \(D_2 \) together give a Heegaard diagram of this splitting such that \(\ell \cup \partial D_i \) does not separate the two points \(H \cap K = \partial t_i \) for \(i = 1 \) and 2. Theorem 1.1 with Addendum \(\text{II} \, (2) \) implies that \(K \) has a satellite diagram of slope \(\ell \).

4. PROOF OF HAVING NO SATellite DIAGRAM OF LONGITudINAL SLOPE

In this section, we show that the torus knot \(K = T(5, 12) \) does not have a 1-genus 1-bridge splitting which admits a satellite diagram of longitudinal slope of one of the solid tori.

Let \((S^3, K) = (V_1, t_1) \cup_H (V_2, t_2) \) be a 1-genus 1-bridge splitting. By Theorem 3 in \([7] \), there are cancelling discs \(C_1, C_2 \) of \(t_1, t_2 \) in \(V_1, V_2 \) such that \(C_1 \cap C_2 = H \cap K \). Set \(C_i \cap H = s_i \), the arc for \(i = 1 \) and \(2 \). Then \(L = s_1 \cup s_2 \) forms a simple closed curve isotopic to \(K \). On one of the solid tori, say \(V_1 \), \(L \) goes around 5 times longitudinally, and on the other solid tori \(V_2 \), 12 times longitudinally. We will show that this splitting does not admit a satellite diagram of longitudinal slope of \(V_2 \).

Let \(D'_i \) be a meridian disc of \(V_i \) such that \(\partial D'_i \) intersects \(s_i \) transversely in a single point \(x_0 \) and \(s_1 \) in 4 points \(x_1, x_2, x_3, x_4 \) which appear on \(\partial D'_i \) in this order. We take a meridian disc \(D_2 \) of \(V_2 \) so that:

1. \(\partial D_2 \) is disjoint from \(s_2 \);
2. \(\partial D_2 \) intersects \(s_1 \) transversely in 12 points \(y_1, \ldots, y_{12} \) appearing on \(\partial D_2 \) in this order;
3. \(\partial D_2 \) intersects \(\partial D'_1 \) in a single point \(y_0 \) between the points \(y_{12} \) and \(y_1 \) and between the points \(x_2 \) and \(x_3 \);
4. the subarc of \(L \) between \(x_0 \) and \(y_3 \) contains a point \(x_+ \) of \(H \cap K \); and
5. the subarc of \(L \) between \(x_0 \) and \(y_{10} \) contains a point \(x_- \) of \(H \cap K \).

See Figure \(\text{III} \) where the torus \(H \) cut along \(\partial D_2 \) is described.

We form a Heegaard diagram of this splitting. We isotope \(D'_1 \) near its boundary along subarcs of \(s_1 \) between \(x_2 \) and \(x_+ \) and between \(x_4 \) and \(x_+ \). See Figure \(\text{IV} \) where subarcs of \(\partial D'_1 \) in (a) are deformed to those in (b). Further, we isotope \(D'_1 \) along subarcs of \(s_1 \) between \(x_3 \) and \(x_- \) and between \(x_1 \) and \(x_- \) similarly.

After these isotopies, \(D'_1 \) is transformed into a disc \(D_1 \) whose boundary is disjoint from the arc \(s_1 \). We schematically describe \(\partial D_1 \) as in Figure \(\text{IV} \, (c) \), which implies \(\partial D_1 \) contains 2 subarcs parallel to the segment from \(x_4 \) to \(x_2 \) and 4 subarcs parallel to the segment from \(x_2 \) to \(x_+ \). We call these subarcs multiplied subarcs of \(s_1 \) in the following.
The circles ∂D_1 and ∂D_2 together give a Heegaard diagram of the 1-genus 1-bridge splitting. This diagram is minimal; that is, $\partial D_1 \cup \partial D_2$ has no bigon in $H - K$. See Figure 5.

By Theorem 1.1 and Addendum 1.2 (1), it is sufficient to confirm that there is no circle ℓ such that ℓ intersects ∂D_2 in a single point, say z, and $|\ell \cap \partial D_1| = |\ell \cdot \partial D_1|$. We orient the circle ∂D_1 arbitrarily. Then every multiplied subarc of s_1 contains a pair of anti-parallel subarcs of ∂D_1.

In Figure 6 the multiplied subarc of s_1 between y_7 and y_{12} and that between y_{12} and y_3 together separate the 2 copies of the corner of ∂D_2 between y_7 and y_{12} (via y_8). Hence the point $z = \ell \cap \partial D_2$ cannot be between y_7 and y_{12} (via y_8). (Otherwise, ℓ must intersect a multiplied subarc of s_1, and then intersects ∂D_1 in more than $|\ell \cdot \partial D_1|$ points.) Similarly, the point z cannot be between y_{12} and y_3 (via y_8).
Considering the multiplied subarc of s_1 between y_1 and y_8 and that between y_3 and y_8, we can see that z cannot be between y_3 and y_8 (via y_4) nor between y_8 and y_1 (via y_9). Hence z can be nowhere, and there is no such ℓ.

REFERENCES

3. H. Goda, C. Hayashi and H. Song, Dehn surgeries on 2-bridge links which yield reducible 3-manifolds, preprint.

Department of Mathematics, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
E-mail address: goda@cc.tuat.ac.jp

Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejiro-dai, Bunkyo-ku, Tokyo, 112-8681, Japan
E-mail address: hayashic@fc.jwu.ac.jp

Division of Mathematical Sciences, Pukyong National University, 599-1 Daeyondong, Namgu, Pusan 608-737, Korea
E-mail address: hjsong@pknu.ac.kr