Quasi-homomorphisms and stable lengths in mapping class groups
Author:
D. Kotschick
Journal:
Proc. Amer. Math. Soc. 132 (2004), 3167-3175
MSC (2000):
Primary 20F69; Secondary 20F12, 57M07
DOI:
https://doi.org/10.1090/S0002-9939-04-07508-2
Published electronically:
May 12, 2004
MathSciNet review:
2073290
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give elementary applications of quasi-homomorphisms to growth problems in groups. A particular case concerns the number of torsion elements required to factor a given element in the mapping class group of a surface.
- 1. Norbert A’Campo, Monodromy of real isolated singularities, Topology 42 (2003), no. 6, 1229–1240. MR 1981355, https://doi.org/10.1016/S0040-9383(02)00099-X
- 2. Christophe Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991), no. 1-2, 109–150 (French). MR 1115747
- 3. Mladen Bestvina and Koji Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69–89. MR 1914565, https://doi.org/10.2140/gt.2002.6.69
- 4. V. Braungardt and D. Kotschick, Clustering of critical points in Lefschetz fibrations and the symplectic Szpiro inequality, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3217–3226. MR 1974683, https://doi.org/10.1090/S0002-9947-03-03290-2
- 5.
T. E. Brendle and B. Farb, Every mapping class group is generated by
torsion elements and by
involutions, Preprint arXiv:math.GT/0307039 v2 24Jul2003.
- 6. M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 199–235. MR 1694584, https://doi.org/10.1007/s100970050007
- 7. H. Endo and D. Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001), no. 1, 169–175. MR 1821147, https://doi.org/10.1007/s002220100128
- 8. Benson Farb, Alexander Lubotzky, and Yair Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001), no. 3, 581–597. MR 1813237, https://doi.org/10.1215/S0012-7094-01-10636-4
- 9. Benson Farb and Howard Masur, Superrigidity and mapping class groups, Topology 37 (1998), no. 6, 1169–1176. MR 1632912, https://doi.org/10.1016/S0040-9383(97)00099-2
- 10. R. E. Gompf, A topological characterization of symplectic manifolds, arXiv:math.SG/0210103 v1 7Oct2002.
- 11. W. J. Harvey, On branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971), 387–399. MR 297994, https://doi.org/10.1090/S0002-9947-1971-0297994-0
- 12. Nikolai V. Ivanov, Mapping class groups, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 523–633. MR 1886678
- 13. Vadim A. Kaimanovich and Howard Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996), no. 2, 221–264. MR 1395719, https://doi.org/10.1007/s002220050074
- 14. M. Korkmaz, Stable commutator length of a Dehn twist, Preprint arXiv:math.GT/0012162 v2 9Jul2003.
- 15. M. Korkmaz, On a question of Brendle and Farb, Preprint arXiv:math.GT/0307146 v2 11Jul2003.
- 16. D. Kotschick, On regularly fibered complex surfaces, Proceedings of the Kirbyfest (Berkeley, CA, 1998) Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 291–298. MR 1734413, https://doi.org/10.2140/gtm.1999.2.291
- 17. Colin Maclachlan, Modulus space is simply-connected, Proc. Amer. Math. Soc. 29 (1971), 85–86. MR 286995, https://doi.org/10.1090/S0002-9939-1971-0286995-X
- 18. John McCarthy and Athanase Papadopoulos, Involutions in surface mapping class groups, Enseign. Math. (2) 33 (1987), no. 3-4, 275–290. MR 925990
- 19. Nicolas Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, vol. 1758, Springer-Verlag, Berlin, 2001. MR 1840942
- 20. Lee Mosher, Mapping class groups are automatic, Ann. of Math. (2) 142 (1995), no. 2, 303–384. MR 1343324, https://doi.org/10.2307/2118637
- 21. Leonid Polterovich and Zeev Rudnick, Kick stability in groups and dynamical systems, Nonlinearity 14 (2001), no. 5, 1331–1363. MR 1862824, https://doi.org/10.1088/0951-7715/14/5/321
- 22. Jerome Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), no. 3, 347–350. MR 494115, https://doi.org/10.1090/S0002-9939-1978-0494115-8
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20F69, 20F12, 57M07
Retrieve articles in all journals with MSC (2000): 20F69, 20F12, 57M07
Additional Information
D. Kotschick
Affiliation:
Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany
Email:
dieter@member.ams.org
DOI:
https://doi.org/10.1090/S0002-9939-04-07508-2
Received by editor(s):
July 28, 2003
Published electronically:
May 12, 2004
Additional Notes:
The author is a member of the European Differential Geometry Endeavour (EDGE), Research Training Network HPRN-CT-2000-00101, supported by The European Human Potential Programme
Communicated by:
Ronald A. Fintushel
Article copyright:
© Copyright 2004
American Mathematical Society