Almost automorphic solutions of evolution equations
HTML articles powered by AMS MathViewer
- by Toka Diagana, Gaston Nguerekata and Nguyen Van Minh
- Proc. Amer. Math. Soc. 132 (2004), 3289-3298
- DOI: https://doi.org/10.1090/S0002-9939-04-07571-9
- Published electronically: June 18, 2004
- PDF | Request permission
Abstract:
This paper is concerned with the existence of almost automorphic mild solutions to equations of the form \[ \dot u(t)= Au(t)+f(t),\tag *{$(*)$}\] where $A$ generates a holomorphic semigroup and $f$ is an almost automorphic function. Since almost automorphic functions may not be uniformly continuous, we introduce the notion of the uniform spectrum of a function. By modifying the method of sums of commuting operators used in previous works for the case of bounded uniformly continuous solutions, we obtain sufficient conditions for the existence of almost automorphic mild solutions to $(*)$ in terms of the imaginary spectrum of $A$ and the uniform spectrum of $f$.References
- Wolfgang Arendt, Frank RĂ€biger, and Ahmed Sourour, Spectral properties of the operator equation $AX+XB=Y$, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 178, 133â149. MR 1280689, DOI 10.1093/qmath/45.2.133
- Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, BirkhÀuser Verlag, Basel, 2001. MR 1886588, DOI 10.1007/978-3-0348-5075-9
- Bolis Basit, Harmonic analysis and asymptotic behavior of solutions to the abstract Cauchy problem, Semigroup Forum 54 (1997), no. 1, 58â74. MR 1418374, DOI 10.1007/BF02676587
- Charles J. K. Batty, Walter Hutter, and Frank RĂ€biger, Almost periodicity of mild solutions of inhomogeneous periodic Cauchy problems, J. Differential Equations 156 (1999), no. 2, 309â327. MR 1705399, DOI 10.1006/jdeq.1998.3610
- G. Da Prato and P. Grisvard, Sommes dâopĂ©rateurs linĂ©aires et Ă©quations diffĂ©rentielles opĂ©rationnelles, J. Math. Pures Appl. (9) 54 (1975), no. 3, 305â387 (French). MR 442749
- Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
- T. Diagana and G. M. NâGuerekata, Some remarks on almost automorphic solutions of some abstract differential equations, Far East J. Math. Sci. (FJMS) 8 (2003), no. 3, 313â322. MR 1977710
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Y. Hino, S. Murakami, Almost automorphic solutions for abstract functional differential equations. Preprint.
- Yoshiyuki Hino, Toshiki Naito, Nguyen Van Minh, and Jong Son Shin, Almost periodic solutions of differential equations in Banach spaces, Stability and Control: Theory, Methods and Applications, vol. 15, Taylor & Francis, London, 2002. MR 1933682
- Russell A. Johnson, A linear, almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc. 82 (1981), no. 2, 199â205. MR 609651, DOI 10.1090/S0002-9939-1981-0609651-0
- Yitzhak Katznelson, An introduction to harmonic analysis, Second corrected edition, Dover Publications, Inc., New York, 1976. MR 0422992
- B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press, Cambridge-New York, 1982. Translated from the Russian by L. W. Longdon. MR 690064
- Satoru Murakami, Toshiki Naito, and Nguyen Van Minh, Evolution semigroups and sums of commuting operators: a new approach to the admissibility theory of function spaces, J. Differential Equations 164 (2000), no. 2, 240â285. MR 1765556, DOI 10.1006/jdeq.1999.3757
- Toshiki Naito and Nguyen Van Minh, Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations, J. Differential Equations 152 (1999), no. 2, 358â376. MR 1674561, DOI 10.1006/jdeq.1998.3531
- Toshiki Naito, Nguyen Van Minh, and Jong Son Shin, New spectral criteria for almost periodic solutions of evolution equations, Studia Math. 145 (2001), no. 2, 97â111. MR 1827999, DOI 10.4064/sm145-2-1
- T. Naito, Nguyen Van Minh, J. Liu, On the bounded solutions of Volterra equations, Applicable Analysis. To appear.
- Jan van Neerven, The asymptotic behaviour of semigroups of linear operators, Operator Theory: Advances and Applications, vol. 88, BirkhÀuser Verlag, Basel, 1996. MR 1409370, DOI 10.1007/978-3-0348-9206-3
- Gaston M. NâGuerekata, Almost automorphic functions and applications to abstract evolution equations, African Americans in mathematics, II (Houston, TX, 1998) Contemp. Math., vol. 252, Amer. Math. Soc., Providence, RI, 1999, pp. 71â76. MR 1747279, DOI 10.1090/conm/252/1747279
- Gaston M. NâGuerekata, Almost automorphic and almost periodic functions in abstract spaces, Kluwer Academic/Plenum Publishers, New York, 2001. MR 1880351, DOI 10.1007/978-1-4757-4482-8
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Jan PrĂŒss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, BirkhĂ€user Verlag, Basel, 1993. MR 1238939, DOI 10.1007/978-3-0348-8570-6
- Wolfgang M. Ruess and William H. Summers, Almost periodicity and stability for solutions to functional-differential equations with infinite delay, Differential Integral Equations 9 (1996), no. 6, 1225â1252. MR 1409925
- Wolfgang M. Ruess and VĆ© Quá»c PhĂłng, Asymptotically almost periodic solutions of evolution equations in Banach spaces, J. Differential Equations 122 (1995), no. 2, 282â301. MR 1355893, DOI 10.1006/jdeq.1995.1149
- Wenxian Shen and Yingfei Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc. 136 (1998), no. 647, x+93. MR 1445493, DOI 10.1090/memo/0647
- Quoc Phong Vu and E. SchĂŒler, The operator equation $AX-XB=C$, admissibility, and asymptotic behavior of differential equations, J. Differential Equations 145 (1998), no. 2, 394â419. MR 1621042, DOI 10.1006/jdeq.1998.3418
- S. Zaidman, Topics in abstract differential equations, Pitman Research Notes in Mathematics Series, vol. 304, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994. MR 1273137
Bibliographic Information
- Toka Diagana
- Affiliation: Department of Mathematics, Howard University, 2441 6th Street N.W., Washington D.C. 20059
- MR Author ID: 662718
- Email: tdiagana@howard.edu
- Gaston Nguerekata
- Affiliation: Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, Maryland 21251
- ORCID: 0000-0001-5765-7175
- Email: gnguerek@jewel.morgan.edu
- Nguyen Van Minh
- Affiliation: Department of Mathematics, Hanoi University of Science, Khoa Toan, Dai Hoc Khoa Hoc Tu Nhien, 334 Nguyen Trai, Hanoi, Vietnam
- Address at time of publication: Department of Mathematics, State University of West Georgia, Carrollton, Georgia 30118
- Email: nvminh@netnam.vn, ngvminh@yahoo.com
- Received by editor(s): July 16, 2003
- Published electronically: June 18, 2004
- Communicated by: Carmen C. Chicone
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 3289-3298
- MSC (2000): Primary 34G10; Secondary 43A60
- DOI: https://doi.org/10.1090/S0002-9939-04-07571-9
- MathSciNet review: 2073304