Fixed points and stability of a nonconvolution equation
HTML articles powered by AMS MathViewer
- by T. A. Burton
- Proc. Amer. Math. Soc. 132 (2004), 3679-3687
- DOI: https://doi.org/10.1090/S0002-9939-04-07497-0
- Published electronically: May 12, 2004
- PDF | Request permission
Abstract:
In this note we consider an equation of the form \[ x’(t)=-\int ^{t}_{t-r} a(t,s)g(x(s))ds\] and give conditions on $a$ and $g$ to ensure that the zero solution is asymptotically stable. When applied to the classical case of $a(t,s)=a(t-s)$, these conditions do not require that $a(r)=0$, nor do they involve the sign of $a(t)$ or the sign of any derivative of $a(t)$.References
- T. A. Burton and W. E. Mahfoud, Stability criteria for Volterra equations, Trans. Amer. Math. Soc. 279 (1983), no. 1, 143–174. MR 704607, DOI 10.1090/S0002-9947-1983-0704607-8
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Jack K. Hale, Sufficient conditions for stability and instability of autonomous functional-differential equations, J. Differential Equations 1 (1965), 452–482. MR 183938, DOI 10.1016/0022-0396(65)90005-7
- Hale, Jack, Dynamical systems and stability, J. Math. Anal. Appl. 26(1969), 39-59.
- Jack Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. MR 0508721
- N. N. Krasovskiĭ, Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay, Stanford University Press, Stanford, Calif., 1963. Translated by J. L. Brenner. MR 0147744
- J. J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Math. Soc. 14 (1963), 534–541. MR 152852, DOI 10.1090/S0002-9939-1963-0152852-8
- J. J. Levin, A nonlinear Volterra equation not of convolution type, J. Differential Equations 4 (1968), 176–186. MR 225117, DOI 10.1016/0022-0396(68)90034-X
- J. J. Levin and J. A. Nohel, On a nonlinear delay equation, J. Math. Anal. Appl. 8 (1964), 31–44. MR 163142, DOI 10.1016/0022-247X(64)90080-0
- John A. Nohel, A class of nonlinear delay differential equations, J. Math. and Phys. 38 (1959/60), 295–311. MR 114104
- Volterra, V., Sur la théorie mathématique des phénomènes héréditaires, J. Math. Pures Appl. 7(1928), 249-298.
- Taro Yoshizawa, Stability theory by Liapunov’s second method, Publications of the Mathematical Society of Japan, vol. 9, Mathematical Society of Japan, Tokyo, 1966. MR 0208086
Bibliographic Information
- T. A. Burton
- Affiliation: Northwest Research Institute, 732 Caroline St., Port Angeles, Washington 98362
- Email: taburton@olypen.com
- Received by editor(s): July 8, 2003
- Received by editor(s) in revised form: September 3, 2003
- Published electronically: May 12, 2004
- Communicated by: Carmen C. Chicone
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 3679-3687
- MSC (2000): Primary 34K20, 47H10
- DOI: https://doi.org/10.1090/S0002-9939-04-07497-0
- MathSciNet review: 2084091