Conformal metrics and Ricci tensors on the sphere
HTML articles powered by AMS MathViewer
- by Romildo Pina and Keti Tenenblat
- Proc. Amer. Math. Soc. 132 (2004), 3715-3724
- DOI: https://doi.org/10.1090/S0002-9939-04-07613-0
- Published electronically: July 22, 2004
- PDF | Request permission
Abstract:
We consider tensors $T=fg$ on the unit sphere $S^n$, where $n\geq 3$, $g$ is the standard metric and $f$ is a differentiable function on $S^n$. For such tensors, we consider the problems of existence of a Riemannian metric $\bar {g}$, conformal to $g$, such that $\mbox {Ric }\bar {g} = T$, and the existence of such a metric that satisfies $\mbox {Ric }\bar {g} - {\bar {K}}\bar {g}/2 = T$, where $\bar {K}$ is the scalar curvature of $\bar {g}$. We find the restrictions on the Ricci candidate for solvability, and we construct the solutions $\bar {g}$ when they exist. We show that these metrics are unique up to homothety, and we characterize those defined on the whole sphere. As a consequence of these results, we determine the tensors $T$ that are rotationally symmetric. Moreover, we obtain the well-known result that a tensor $T=\alpha g$, $\alpha >0$, has no solution $\bar {g}$ on $S^n$ if $\alpha \neq n-1$ and only metrics homothetic to $g$ admit $(n-1)g$ as a Ricci tensor. We also show that if $\alpha \neq -(n-1)(n-2)/2$, then equation $\mbox {Ric }\bar {g} - \displaystyle {\bar {K}}\bar {g}/2 = \alpha g$ has no solution $\bar {g}$, conformal to $g$ on $S^n$, and only metrics homothetic to $g$ are solutions to this equation when $\alpha = -(n-1)(n-2)/2$. Infinitely many $C^\infty$ solutions, globally defined on $S^n$, are obtained for the equation \[ - \varphi \Delta _g \varphi +\displaystyle \frac {n}{2} |\nabla _g \varphi |^2 - \displaystyle \frac {n}{2}\left ( \lambda + \varphi ^2 \right ) = 0, \] where $\lambda \in R$. The geometric interpretation of these solutions is given in terms of existence of complete metrics, globally defined on $R^n$ and conformal to the Euclidean metric, for certain bounded scalar curvature functions that vanish at infinity.References
- A. Barnes, Space times of embedding class one in general relativity, Gen. Relativity Gravitation 5 (1974), no. 2, 147–162. MR 411526, DOI 10.1007/bf00763496
- Brinkmann, H.W., Einstein spaces which are mapped conformally on each other, Math. Ann. 94, (1925), 119-145.
- Jian Guo Cao and Dennis DeTurck, Prescribing Ricci curvature on open surfaces, Hokkaido Math. J. 20 (1991), no. 2, 265–278. MR 1114407, DOI 10.14492/hokmj/1381413843
- Jian Guo Cao and Dennis DeTurck, The Ricci curvature equation with rotational symmetry, Amer. J. Math. 116 (1994), no. 2, 219–241. MR 1269604, DOI 10.2307/2374929
- M. Cahen and J. Leroy, Exact solutions of Einstein-Maxwell equations, J. Math. Mech. 16 (1966), 501–508. MR 0204127, DOI 10.1512/iumj.1967.16.16034
- Dennis M. DeTurck, Existence of metrics with prescribed Ricci curvature: local theory, Invent. Math. 65 (1981/82), no. 1, 179–207. MR 636886, DOI 10.1007/BF01389010
- Dennis M. DeTurck, Metrics with prescribed Ricci curvature, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 525–537. MR 645758
- Dennis M. DeTurck, The Cauchy problem for Lorentz metrics with prescribed Ricci curvature, Compositio Math. 48 (1983), no. 3, 327–349. MR 700744
- Dennis M. DeTurck and Norihito Koiso, Uniqueness and nonexistence of metrics with prescribed Ricci curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 351–359 (English, with French summary). MR 779873
- Richard Hamilton, The Ricci curvature equation, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 47–72. MR 765228, DOI 10.1007/978-1-4612-1110-5_{4}
- D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact solutions of Einstein’s field equations, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge-New York, 1980. Edited by Ernst Schmutzer. MR 614593
- Wolfgang Kühnel, Conformal transformations between Einstein spaces, Conformal geometry (Bonn, 1985/1986) Aspects Math., E12, Friedr. Vieweg, Braunschweig, 1988, pp. 105–146. MR 979791
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, DOI 10.1090/S0273-0979-1987-15514-5
- R. G. McLenaghan, N. Tariq, and B. O. J. Tupper, Conformally flat solutions of the Einstein-Maxwell equations for null electromagnetic fields, J. Mathematical Phys. 16 (1975), 829–831. MR 376089, DOI 10.1063/1.522612
- Romildo Pina and Keti Tenenblat, Conformal metrics and Ricci tensors in the pseudo-Euclidean space, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1149–1160. MR 1814152, DOI 10.1090/S0002-9939-00-05817-2
- Romildo Pina and Keti Tenenblat, On metrics satifying equation $R_{ij}-\frac 12Kg_{ij}=T_{ij}$ for constant tensors $T$, J. Geom. Phys. 40 (2002), no. 3-4, 379–383. MR 1866996, DOI 10.1016/S0393-0440(01)00043-2
- Stephani, H., Konform flache Gravitationsfelder, Comm. in Math. Phys. 5, (1967) 337-342.
- Xingwang Xu, Prescribing a Ricci tensor in a conformal class of Riemannian metrics, Proc. Amer. Math. Soc. 115 (1992), no. 2, 455–459. MR 1093607, DOI 10.1090/S0002-9939-1992-1093607-8
- Shing Tung Yau (ed.), Seminar on Differential Geometry, Annals of Mathematics Studies, No. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Papers presented at seminars held during the academic year 1979–1980. MR 645728
Bibliographic Information
- Romildo Pina
- Affiliation: IME, Universidade Federal de Goiás, 74001-970 Goiânia, GO, Brazil
- Email: romildo@mat.ufg.br
- Keti Tenenblat
- Affiliation: Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
- MR Author ID: 171535
- Email: keti@mat.unb.br
- Received by editor(s): May 30, 2002
- Received by editor(s) in revised form: May 14, 2003
- Published electronically: July 22, 2004
- Additional Notes: The first author was partially supported by FUNAPE/UFG and PROCAD
The second author was partially supported by CNPq, PRONEX and PROCAD - Communicated by: Wolfgang Ziller
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 3715-3724
- MSC (2000): Primary 53C21, 53C50, 53C80
- DOI: https://doi.org/10.1090/S0002-9939-04-07613-0
- MathSciNet review: 2084096