Local cohomology modules with infinite dimensional socles
HTML articles powered by AMS MathViewer
- by Thomas Marley and Janet C. Vassilev
- Proc. Amer. Math. Soc. 132 (2004), 3485-3490
- DOI: https://doi.org/10.1090/S0002-9939-04-07658-0
- Published electronically: July 22, 2004
- PDF | Request permission
Abstract:
In this paper we prove the following generalization of a result of Hartshorne: Let $T$ be a commutative Noetherian local ring of dimension at least two, $R=T[x_1,\dots ,x_n]$, and $I=(x_1,\ldots ,x_n)$. Let $f$ be a homogeneous element of $R$ such that the coefficients of $f$ form a system of parameters for $T$. Then the socle of $H^n_I(R/fR)$ is infinite dimensional.References
- Markus P. Brodmann, Mordechai Katzman, and Rodney Y. Sharp, Associated primes of graded components of local cohomology modules, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4261–4283. MR 1926875, DOI 10.1090/S0002-9947-02-02987-2
- M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627, DOI 10.1017/CBO9780511629204
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- David A. Buchsbaum and David Eisenbud, What annihilates a module?, J. Algebra 47 (1977), no. 2, 231–243. MR 476736, DOI 10.1016/0021-8693(77)90223-X
- Donatella Delfino and Thomas Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997), no. 1, 45–52. MR 1471123, DOI 10.1016/S0022-4049(96)00044-8
- Robin Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1969/70), 145–164. MR 257096, DOI 10.1007/BF01404554
- David Helm and Ezra Miller, Bass numbers of semigroup-graded local cohomology, Pacific J. Math. 209 (2003), no. 1, 41–66. MR 1973933, DOI 10.2140/pjm.2003.209.41
- David Eisenbud and Craig Huneke (eds.), Free resolutions in commutative algebra and algebraic geometry, Research Notes in Mathematics, vol. 2, Jones and Bartlett Publishers, Boston, MA, 1992. Papers from the conference held in Sundance, Utah, May 1990. MR 1165313
- Craig Huneke and Jee Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421–429. MR 1120477, DOI 10.1017/S0305004100070493
- Craig L. Huneke and Rodney Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), no. 2, 765–779. MR 1124167, DOI 10.1090/S0002-9947-1993-1124167-6
- Mordechai Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra 252 (2002), no. 1, 161–166. MR 1922391, DOI 10.1016/S0021-8693(02)00032-7
- Mordechai Katzman and Rodney Y. Sharp, Some properties of top graded local cohomology modules, J. Algebra 259 (2003), no. 2, 599–612. MR 1955534, DOI 10.1016/S0021-8693(02)00567-7
- Gennady Lyubeznik, Finiteness properties of local cohomology modules (an application of $D$-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41–55. MR 1223223, DOI 10.1007/BF01244301
- Gennady Lyubeznik, Finiteness properties of local cohomology modules for regular local rings of mixed characteristic: the unramified case, Comm. Algebra 28 (2000), no. 12, 5867–5882. Special issue in honor of Robin Hartshorne. MR 1808608, DOI 10.1080/00927870008827193
- Thomas Marley and Janet C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra 256 (2002), no. 1, 180–193. MR 1936885, DOI 10.1016/S0021-8693(02)00151-5
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
Bibliographic Information
- Thomas Marley
- Affiliation: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0323
- MR Author ID: 263869
- Email: tmarley@math.unl.edu
- Janet C. Vassilev
- Affiliation: Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkan- sas 72701
- Email: jvassil@uark.edu
- Received by editor(s): July 16, 2003
- Published electronically: July 22, 2004
- Additional Notes: The first author was partially supported by NSF grant DMS-0071008.
- Communicated by: Bernd Ulrich
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 132 (2004), 3485-3490
- MSC (2000): Primary 13D45
- DOI: https://doi.org/10.1090/S0002-9939-04-07658-0
- MathSciNet review: 2084068