On a certain class of modular functions
Author:
Winfried Kohnen
Journal:
Proc. Amer. Math. Soc. 133 (2005), 65-70
MSC (2000):
Primary 11F11
DOI:
https://doi.org/10.1090/S0002-9939-04-07450-7
Published electronically:
May 12, 2004
MathSciNet review:
2085154
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a characterization of those meromorphic modular functions on a subgroup of finite index of the full modular group whose divisors are supported at the cusps, in terms of the growth of the exponents of their infinite product expansions.
- 1. J. H. Bruinier, W. Kohnen and K. Ono: The arithmetic of the values of modular functions and the divisors of modular forms, to appear in Compositio Math.
- 2. Wolfgang Eholzer and Nils-Peter Skoruppa, Product expansions of conformal characters, Phys. Lett. B 388 (1996), no. 1, 82–89. MR 1418608, https://doi.org/10.1016/0370-2693(96)01154-9
- 3. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- 4. Erich Hecke, Mathematische Werke, Herausgegeben im Auftrage der Akademie der Wissenschaften zu Göttingen, Vandenhoeck & Ruprecht, Göttingen, 1959 (German). MR 0104550
- 5. Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR 648603
- 6. Serge Lang, Introduction to modular forms, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, No. 222. MR 0429740
- 7. H. Maass, Lectures on modular functions of one complex variable, 2nd ed., Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 29, Tata Institute of Fundamental Research, Bombay, 1983. With notes by Sunder Lal. MR 734485
- 8. Yves Martin, Multiplicative 𝜂-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825–4856. MR 1376550, https://doi.org/10.1090/S0002-9947-96-01743-6
- 9. Robert A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0498390
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F11
Retrieve articles in all journals with MSC (2000): 11F11
Additional Information
Winfried Kohnen
Affiliation:
Mathematisches Institut, Universität Heidelberg, INF 288, D-69120 Heidelberg, Germany
Email:
winfried@mathi.uni-heidelberg.de
DOI:
https://doi.org/10.1090/S0002-9939-04-07450-7
Received by editor(s):
February 12, 2003
Received by editor(s) in revised form:
July 9, 2003, and October 27, 2003
Published electronically:
May 12, 2004
Communicated by:
Wen-Ching Winnie Li
Article copyright:
© Copyright 2004
American Mathematical Society