PROJECTIVE SURFACES WITH MANY SKEW LINES

SLAWOMIR RAMS

(Communicated by Michael Stillman)

Abstract. We give an example of a smooth surface \(S_d \subset \mathbb{P}_d(\mathbb{C}) \) of degree \(d \) that contains \(d \cdot (d - 2) + 2 \) pairwise disjoint lines. In particular, our example shows that the degree in Miyaoka’s bound is sharp.

Up to now the maximal number of pairwise disjoint lines on a smooth surface of degree \(d \geq 5 \) in \(\mathbb{P}_d(\mathbb{C}) \) was unknown. According to [4, p. 162] this number does not exceed
\[2 \cdot d \cdot (d - 2). \]
Quartic surfaces with 16 skew lines are studied in [1], but it is not clear to what extent Miyaoka’s bound is sharp for \(d \geq 5 \). Here we give an example of a smooth surface \(S_d \subset \mathbb{P}_d(\mathbb{C}) \) of degree \(d \) that contains
\[d \cdot (d - 2) + 2 \]
pairwise disjoint lines. All lines on \(S_d \) form the following configuration:

\[\ldots \]
\[\ldots \]
\[d \cdot (d - 2) + 2 \text{ pairwise disjoint lines} \]

Our example is inspired by the classical Klein quartic curve.
The equation of a quintic with 19 skew lines is given in [5, Example 2.3]. For \(d \geq 6 \) the surface \(S_d \) contains the largest number of skew lines found on a smooth surface of degree \(d \) in \(\mathbb{P}_d(\mathbb{C}) \). Let us mention that the Fermat surface \(F_d \), i.e. the surface with \(3d^2 \) lines (the largest number known so far for \(d \neq 4, 6, 8, 12, 20 \)), contains no family of \(3d \) pairwise disjoint lines. The latter results from the description of configuration of lines on \(F_d \) that can be found in [3].

Example. We define \(S_d \) to be the surface given by the polynomial
\[s_d := x_0^{d-1} \cdot x_1 + x_1^{d-1} \cdot x_2 + x_2^{d-1} \cdot x_3 + x_3^{d-1} \cdot x_0, \]
where \(d \geq 6 \). One can easily check that \(S_d \) is smooth. Let \(L_1 \) (resp. \(L_2 \)) be the line \(x_0 = x_2 = 0 \) (resp. \(x_1 = x_3 = 0 \)). We claim that

(a) \(S_d \) contains \(d \cdot (d - 2) + 2 \) skew lines, each of which meets \(L_1 \) and \(L_2 \),

(b) the only lines on \(S_d \) are \(L_1, L_2 \) and the above-mentioned skew lines.

Proof of (a). Fix \(r_0, r_1 \in \mathbb{C} \). The line \((r_0 \lambda_0 : r_1 \lambda_1 : \lambda_0 : \lambda_1) \) lies on \(S_d \) iff the polynomial

\[
(r_0^{d-1} r_1 + 1) \lambda_0^{d-1} \lambda_1 + (r_1^{d-1} + r_0) \lambda_0 \lambda_1^{d-1}
\]

vanishes identically. So the parameters \(r_0, r_1 \) satisfy the conditions

\[
(1) \quad r_0 = (-r_1^{d-1}) \quad \text{and} \quad r_1^{(d-1)^2+1} = (-1)^d.
\]

Let \(L(r_1) \) be the line on \(S_d \) that corresponds to \(r_0 = (-r_1^{d-1}) \). We are to show that, for \(r_1 \neq r_1' \), the lines \(L(r_1), L(r_1') \) are disjoint. Suppose that \(L(r_1), L(r_1') \) meet in the point \((y_2 : y_1 : y_2 : y_3) \). If \(y_3 \neq 0 \), then the parametrization of the lines in question yields \(r_1 = r_1' \) and they coincide. Otherwise we have \(y_2 \neq 0 \); so we get \(r_1^{d-1} = (r_1')^{d-1} \). By (1) we have \(r_1 = r_1' \).

Proof of (b). We claim that \(L_2 \) is the only line on \(S_d \) that does not meet \(L_1 \). Indeed, let \(C_1 \) (resp. \(C_2 \)) be the curve residual to the line \(L_1 \) in the intersection of \(S_d \) with the plane \(x_0 = 0 \) (resp. \(x_2 = 0 \)). We have the parametrizations

\[
\begin{align*}
\psi_1 : C \ni a_1 & \mapsto (0 : a_1 : 1 : -a_1^{d-1}) \in C_1 \setminus \{(0 : 0 : 0 : 1)\}, \\
\psi_2 : C \ni a_2 & \mapsto (1 : -a_2^{d-1} : 0 : a_2) \in C_2 \setminus \{(0 : 1 : 0 : 0)\}.
\end{align*}
\]

The line through the points \(\psi_1(a_1), \psi_2(a_2) \) lies on \(S_d \) iff all coefficients of the polynomial \(s_d(\lambda_1, \lambda_0 a_1 - \lambda_1 a_2^{d-1}, \lambda_0, \lambda_1 a_2 - \lambda_0 a_2^{d-1}) \) vanish. Write down the coecients of the terms \(\lambda_0^{d-1} \lambda_1, \ldots, \lambda_0^{d-4} \lambda_2^4 \) to see that \(a_1, a_2 \) satisfy the conditions

\[
\begin{align*}
&\quad (2) \quad - (d - 1) a_1^{d-2} a_2^{d-1} + a_2 + (-1)^{d-1} a_1^{(d-1)^2} = 0, \\
&\quad (3) \quad \frac{d - 2}{2} a_1^{d-3} a_2^{2(d-1)} = (-1)^{d-1} a_1^{(d-1)(d-2)} a_2, \\
&\quad (4) \quad \frac{d - 3}{3} a_1^{d-4} a_2^{3(d-1)} = (-1)^{d-1} a_1^{(d-1)(d-3)} a_2^2, \\
&\quad (5) \quad \frac{d - 4}{4} a_1^{d-5} a_2^{4(d-1)} = (-1)^{d-1} a_1^{(d-1)(d-4)} a_2^3.
\end{align*}
\]

By the equation (2) we have \(a_1 = 0 \) iff \(a_2 = 0 \). This solution corresponds to the line \(L_2 \). Dividing (3) by (4) and (4) by (5) one gets that \(a_1 = a_2 = 0 \) is the unique solution. Thus \(L_2 \) is the only line on \(S_d \) that does not meet \(L_1 \).

The symmetry \((x_0 : x_1 : x_2 : x_3) \to (x_3 : x_0 : x_1 : x_2) \) interchanges the lines \(L_1, L_2 \). So the other lines on \(S_d \) meet both \(L_1 \) and \(L_2 \). One can check (see the proof of \((a) \)) that there are precisely \(d \cdot (d - 2) + 2 \) such lines.

Acknowledgements

I would like to thank Prof. W. Barth for helpful discussions.

References

Institute of Mathematics UJ, ul. Reymonta 4, 30-059 Kraków, Poland
Current address: Mathematisches Institut, FAU Erlangen-Nürnberg, Bismarckstrasse 1 1/2, D-91054 Erlangen, Germany
E-mail address: rams@mi.uni-erlangen.de, rams@im.uj.edu.pl