Finite $s$-arc transitive Cayley graphs and flag-transitive projective planes
HTML articles powered by AMS MathViewer
- by Cai Heng Li
- Proc. Amer. Math. Soc. 133 (2005), 31-41
- DOI: https://doi.org/10.1090/S0002-9939-04-07549-5
- Published electronically: July 26, 2004
- PDF | Request permission
Abstract:
In this paper, a characterisation is given of finite $s$-arc transitive Cayley graphs with $s\ge 2$. In particular, it is shown that, for any given integer $k$ with $k\ge 3$ and $k\not =7$, there exists a finite set (maybe empty) of $s$-transitive Cayley graphs with $s\in \{3,4,5,7\}$ such that all $s$-transitive Cayley graphs of valency $k$ are their normal covers. This indicates that $s$-arc transitive Cayley graphs with $s\ge 3$ are very rare. However, it is proved that there exist 4-arc transitive Cayley graphs for each admissible valency (a prime power plus one). It is then shown that the existence of a flag-transitive non-Desarguesian projective plane is equivalent to the existence of a very special arc transitive normal Cayley graph of a dihedral group.References
- Brian Alspach, Marston D. E. Conder, Dragan Marušič, and Ming-Yao Xu, A classification of $2$-arc-transitive circulants, J. Algebraic Combin. 5 (1996), no. 2, 83–86. MR 1382039, DOI 10.1023/A:1022456615990
- Robert W. Baddeley, Two-arc transitive graphs and twisted wreath products, J. Algebraic Combin. 2 (1993), no. 3, 215–237. MR 1235278, DOI 10.1023/A:1022447514654
- Norman Biggs, Algebraic graph theory, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. MR 1271140
- Peter J. Cameron, Permutation groups, London Mathematical Society Student Texts, vol. 45, Cambridge University Press, Cambridge, 1999. MR 1721031, DOI 10.1017/CBO9780511623677
- P. J. Cameron, C. E. Praeger, J. Saxl, and G. M. Seitz, On the Sims conjecture and distance transitive graphs, Bull. London Math. Soc. 15 (1983), no. 5, 499–506. MR 705530, DOI 10.1112/blms/15.5.499
- P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin-New York, 1968. MR 0233275, DOI 10.1007/978-3-642-62012-6
- Walter Feit, Finite projective planes and a question about primes, Proc. Amer. Math. Soc. 108 (1990), no. 2, 561–564. MR 1002157, DOI 10.1090/S0002-9939-1990-1002157-4
- C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981), no. 3, 243–256. MR 637829, DOI 10.1007/BF02579330
- Robert M. Guralnick, Subgroups of prime power index in a simple group, J. Algebra 81 (1983), no. 2, 304–311. MR 700286, DOI 10.1016/0021-8693(83)90190-4
- A. A. Ivanov and M. E. Iofinova, Biprimitive cubic graphs, Investigations in the algebraic theory of combinatorial objects (Russian), Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1985, pp. 123–134 (Russian). MR 921464
- A. A. Ivanov and Cheryl E. Praeger, On finite affine $2$-arc transitive graphs, European J. Combin. 14 (1993), no. 5, 421–444. Algebraic combinatorics (Vladimir, 1991). MR 1241910, DOI 10.1006/eujc.1993.1047
- William M. Kantor, Primitive permutation groups of odd degree, and an application to finite projective planes, J. Algebra 106 (1987), no. 1, 15–45. MR 878466, DOI 10.1016/0021-8693(87)90019-6
- Cai Heng Li, Finite $s$-arc transitive graphs of prime-power order, Bull. London Math. Soc. 33 (2001), no. 2, 129–137. MR 1815416, DOI 10.1112/blms/33.2.129
- Cai Heng Li, The finite vertex-primitive and vertex-biprimitive $s$-transitive graphs for $s\geq 4$, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3511–3529. MR 1837245, DOI 10.1090/S0002-9947-01-02768-4
- C. H. Li, On finite 2-arc-transitive Cayley graphs, submitted.
- C. H. Li and A. Seress, Finite quasiprimitive $s$-arc transitive graphs of product action type, in preparation.
- Hendrik van Maldeghem, Generalized polygons, Monographs in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 1998. MR 1725957, DOI 10.1007/978-3-0348-0271-0
- Dragan Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory Ser. B 87 (2003), no. 1, 162–196. Dedicated to Crispin St. J. A. Nash-Williams. MR 1967887, DOI 10.1016/S0095-8956(02)00033-3
- Cheryl E. Praeger, An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to $2$-arc transitive graphs, J. London Math. Soc. (2) 47 (1993), no. 2, 227–239. MR 1207945, DOI 10.1112/jlms/s2-47.2.227
- Cheryl E. Praeger, On a reduction theorem for finite, bipartite $2$-arc-transitive graphs, Australas. J. Combin. 7 (1993), 21–36. MR 1211263
- Cheryl E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Austral. Math. Soc. 60 (1999), no. 2, 207–220. MR 1711938, DOI 10.1017/S0004972700036340
- Koen Thas, Finite flag-transitive projective planes: a survey and some remarks, Discrete Math. 266 (2003), 417-429.
- V. I. Trofimov and R. M. Weiss, Graphs with a locally linear group of automorphisms, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 2, 191–206. MR 1341785, DOI 10.1017/S0305004100073588
- Richard Weiss, The nonexistence of $8$-transitive graphs, Combinatorica 1 (1981), no. 3, 309–311. MR 637836, DOI 10.1007/BF02579337
- Ming-Yao Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), no. 1-3, 309–319. Graph theory (Lake Bled, 1995). MR 1603719, DOI 10.1016/S0012-365X(97)00152-0
Bibliographic Information
- Cai Heng Li
- Affiliation: School of Mathematics and Statistics, The University of Western Australia, Crawley, 6009 Western Australia, Australia
- MR Author ID: 305568
- Email: li@maths.uwa.edu.au
- Received by editor(s): August 27, 2003
- Received by editor(s) in revised form: September 11, 2003, and September 24, 2003
- Published electronically: July 26, 2004
- Additional Notes: This work was supported by an Australian Research Council Discovery Grant, and a QEII Fellowship. The author is grateful to the referee for his constructive comments.
- Communicated by: John R. Stembridge
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 31-41
- MSC (2000): Primary 20B15, 20B30, 05C25
- DOI: https://doi.org/10.1090/S0002-9939-04-07549-5
- MathSciNet review: 2085150