Hermite-Biehler functions with zeros close to the imaginary axis
HTML articles powered by AMS MathViewer
- by Michael Kaltenbäck and Harald Woracek
- Proc. Amer. Math. Soc. 133 (2005), 245-255
- DOI: https://doi.org/10.1090/S0002-9939-04-07605-1
- Published electronically: August 4, 2004
- PDF | Request permission
Abstract:
A Hermite-Biehler function $E$ gives rise to a de Branges Hilbert space $\mathcal {H}(E)$ consisting of entire functions. We are going to show that for Hermite-Biehler functions of sufficiently small growth and a certain distribution of zeros every proper de Branges subspace of $\mathcal {H}(E)$ coincides for some $n\in \mathbb {N}$ with the $(n+1)$-dimensional linear space of all polynomials of degree at most $n$.References
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Louis de Branges, Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR 0229011
- H. Dym and H. P. McKean Jr., Application of de Branges spaces of integral functions to the prediction of stationary Gaussian processes, Illinois J. Math. 14 (1970), 299–343. MR 260013
- M. Kaltenbäck and H. Woracek, Pontryagin spaces of entire functions. I, Integral Equations Operator Theory 33 (1999), no. 1, 34–97. MR 1664343, DOI 10.1007/BF01203081
- M. Kaltenbäck, H. Woracek, de Branges spaces of exponential type: General theory of growth, submitted.
- N. Levinson and H. P. McKean Jr., Weighted trigonometrical approximation on $R^{1}$ with application to the germ field of a stationary Gaussian noise, Acta Math. 112 (1964), 99–143. MR 163111, DOI 10.1007/BF02391767
- Marvin Rosenblum and James Rovnyak, Topics in Hardy classes and univalent functions, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1307384, DOI 10.1007/978-3-0348-8520-1
- E.C. Titchmarsh, The theory of functions, Oxford University Press, Second edition 1939, corrected 1983.
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
Bibliographic Information
- Michael Kaltenbäck
- Affiliation: Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner Hauptstr. 8–10/101, A–1040 Wien, Austria
- Email: michael.kaltenbaeck@tuwien.ac.at
- Harald Woracek
- Affiliation: Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner Hauptstr. 8–10/101, A–1040 Wien, Austria
- Email: harald.woracek@tuwien.ac.at
- Received by editor(s): March 15, 2003
- Received by editor(s) in revised form: October 7, 2003
- Published electronically: August 4, 2004
- Communicated by: Joseph A. Ball
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 245-255
- MSC (2000): Primary 46E20, 46E22; Secondary 30H05, 30D15
- DOI: https://doi.org/10.1090/S0002-9939-04-07605-1
- MathSciNet review: 2086217