Which singular K3 surfaces cover an Enriques surface
Author:
Ali Sinan Sertöz
Journal:
Proc. Amer. Math. Soc. 133 (2005), 43-50
MSC (2000):
Primary 14J28; Secondary 11E39
DOI:
https://doi.org/10.1090/S0002-9939-04-07666-X
Published electronically:
August 20, 2004
MathSciNet review:
2085151
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We determine the necessary and sufficient conditions on the entries of the intersection matrix of the transcendental lattice of a singular K3 surface for the surface to doubly cover an Enriques surface.
- 1. W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
- 2. Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310
- 3. Garrett Birkhoff and Saunders MacLane, A Survey of Modern Algebra, Macmillan Company, New York, 1941. MR 0005093
- 4. A. Degtyarev, I. Itenberg, and V. Kharlamov, Real Enriques surfaces, Lecture Notes in Mathematics, vol. 1746, Springer-Verlag, Berlin, 2000. MR 1795406
- 5. Eiji Horikawa, On the periods of Enriques surfaces. I, Math. Ann. 234 (1978), no. 1, 73–88. MR 491725, https://doi.org/10.1007/BF01409342
- 6. Eiji Horikawa, On the periods of Enriques surfaces. I, Math. Ann. 234 (1978), no. 1, 73–88. MR 491725, https://doi.org/10.1007/BF01409342
- 7. Jong Hae Keum, Every algebraic Kummer surface is the 𝐾3-cover of an Enriques surface, Nagoya Math. J. 118 (1990), 99–110. MR 1060704, https://doi.org/10.1017/S0027763000003019
- 8. D. R. Morrison, On 𝐾3 surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105–121. MR 728142, https://doi.org/10.1007/BF01403093
- 9. John Milnor and Dale Husemoller, Symmetric bilinear forms, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. MR 0506372
- 10. V. V. Nikulin, Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 278–293, 471 (Russian). MR 0429917
- 11. V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- 12. Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An introduction to the theory of numbers, 5th ed., John Wiley & Sons, Inc., New York, 1991. MR 1083765
- 13. I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type 𝐾3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 0284440
- 14. T. Shioda and H. Inose, On singular 𝐾3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 119–136. MR 0441982
- 15. È. B. Vinberg, The groups of units of certain quadratic forms, Mat. Sb. (N.S.) 87(129) (1972), 18–36 (Russian). MR 0295193
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14J28, 11E39
Retrieve articles in all journals with MSC (2000): 14J28, 11E39
Additional Information
Ali Sinan Sertöz
Affiliation:
Department of Mathematics, Bilkent University, TR-06800 Ankara, Turkey
Email:
sertoz@bilkent.edu.tr
DOI:
https://doi.org/10.1090/S0002-9939-04-07666-X
Keywords:
K3 surfaces,
Enriques surfaces,
integral lattices
Received by editor(s):
February 15, 2003
Received by editor(s) in revised form:
October 9, 2003
Published electronically:
August 20, 2004
Additional Notes:
This research was partially supported by TÜBİTAK-BDP
Communicated by:
Michael Stillman
Article copyright:
© Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.