Which singular K3 surfaces cover an Enriques surface
HTML articles powered by AMS MathViewer
- by Alı̇ Sı̇nan Sertöz
- Proc. Amer. Math. Soc. 133 (2005), 43-50
- DOI: https://doi.org/10.1090/S0002-9939-04-07666-X
- Published electronically: August 20, 2004
- PDF | Request permission
Abstract:
We determine the necessary and sufficient conditions on the entries of the intersection matrix of the transcendental lattice of a singular K3 surface for the surface to doubly cover an Enriques surface.References
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310, DOI 10.1007/978-3-642-58158-8
- Garrett Birkhoff and Saunders MacLane, A Survey of Modern Algebra, The Macmillan Company, New York, 1941. MR 0005093
- A. Degtyarev, I. Itenberg, and V. Kharlamov, Real Enriques surfaces, Lecture Notes in Mathematics, vol. 1746, Springer-Verlag, Berlin, 2000. MR 1795406, DOI 10.1007/BFb0103960
- Eiji Horikawa, On the periods of Enriques surfaces. I, Math. Ann. 234 (1978), no. 1, 73–88. MR 491725, DOI 10.1007/BF01409342
- Eiji Horikawa, On the periods of Enriques surfaces. I, Math. Ann. 234 (1978), no. 1, 73–88. MR 491725, DOI 10.1007/BF01409342
- Jong Hae Keum, Every algebraic Kummer surface is the $K3$-cover of an Enriques surface, Nagoya Math. J. 118 (1990), 99–110. MR 1060704, DOI 10.1017/S0027763000003019
- D. R. Morrison, On $K3$ surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105–121. MR 728142, DOI 10.1007/BF01403093
- John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372, DOI 10.1007/978-3-642-88330-9
- V. V. Nikulin, Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 278–293, 471 (Russian). MR 0429917
- V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An introduction to the theory of numbers, 5th ed., John Wiley & Sons, Inc., New York, 1991. MR 1083765
- I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type $\textrm {K}3$, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 0284440
- T. Shioda and H. Inose, On singular $K3$ surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 119–136. MR 0441982
- È. B. Vinberg, The groups of units of certain quadratic forms, Mat. Sb. (N.S.) 87(129) (1972), 18–36 (Russian). MR 0295193
Bibliographic Information
- Alı̇ Sı̇nan Sertöz
- Affiliation: Department of Mathematics, Bi̇lkent University, TR-06800 Ankara, Turkey
- ORCID: 0000-0001-7907-8713
- Email: sertoz@bilkent.edu.tr
- Received by editor(s): February 15, 2003
- Received by editor(s) in revised form: October 9, 2003
- Published electronically: August 20, 2004
- Additional Notes: This research was partially supported by TÜBİTAK-BDP
- Communicated by: Michael Stillman
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 43-50
- MSC (2000): Primary 14J28; Secondary 11E39
- DOI: https://doi.org/10.1090/S0002-9939-04-07666-X
- MathSciNet review: 2085151