JOINS OF PROJECTIVE VARIETIES
AND MULTISEcant SPACES

E. BALLICO

(Communicated by Michael Stillman)

Abstract. Let $X_1, \ldots, X_s \subset \mathbb{P}^N$, $s \geq 1$, be integral varieties. For any integers $k_i > 0$, $1 \leq i \leq s$, and $t \geq 0$ set $\vec{k} := (k_1, \ldots, k_s)$ and $\vec{X} := (X_1, \ldots, X_s)$. Let $\text{Sec}(\vec{X}; t, \vec{k})$ be the set of all linear t-spaces contained in a linear $(k_1 + \cdots + k_s - 1)$-space spanned by k_1 points of X_1, k_2 points of X_2, ..., k_s points of X_s. Here we study some cases where $\text{Sec}(\vec{X}; t, \vec{k})$ has the expected dimension. The case $s = 1$ was recently considered by Chiantini and Coppens and we follow their ideas. The two main results of the paper consider cases where each X_i is a surface, more particularly:

1. Introduction

L. Chiantini and M. Coppens revived a piece of classical projective geometry (see [6] and references therein): the study of the set of all linear spaces contained in the secant varieties of an integral variety $X \subset \mathbb{P}^N$. For further papers on this topic, see [5], [8] and [9]. Let $G(t + 1, N + 1)$ be the Grassmannian of all t-dimensional linear subspaces of \mathbb{P}^N. The order k secant variety of X is the join of k copies of X. In this paper we fix s varieties $X_i \subset \mathbb{P}^N$, $1 \leq i \leq s$, and consider the closure in $G(t + 1, N + 1)$ of the set of all t-spaces contained in a $(k_1 + \cdots + k_s - 1)$-space spanned by k_1 points of X_1, k_2 points of X_2, ..., k_s points of X_s. The case $s = 1$ is the case considered in [6] and we will often use the ideas contained in [6].

Fix integers $N \geq 3$, $s > 0$ and $k_i \geq 0$, $1 \leq i \leq s$. Set $\vec{k} := (k_1, \ldots, k_s)$ and $|\vec{k}| := k_1 + \cdots + k_s - 1$. Let t be an integer such that $0 \leq t \leq |\vec{k}|$. Fix s irreducible varieties $X_i \subset \mathbb{P}^N$, $1 \leq i \leq s$. Usually, we will be interested in the case $X_i \neq X_j$ for $i \neq j$, since the general case may be reduced to this case by decreasing s, but with the same

Received by the editors August 16, 2002.

2000 Mathematics Subject Classification. Primary 14N05, 14M15.

Key words and phrases. Joins, multisecant spaces, secant variety, Grassmannian.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
value of $|\tilde{k}|$. The (t, \tilde{k})-secant variety $\text{Sec}(\tilde{X}; t, \tilde{k})$ of \tilde{X} is the closure in $G(t+1, N+1)$ of all t-spaces contained in a $|\tilde{k}|$-dimensional linear subspace of \mathbb{P}^N spanned by k_i points of X_1, k_2 points of X_2, ..., k_s points of X_s. Set $\text{Sec}(\tilde{X}; 0, \tilde{k}) := \text{Sec}(\tilde{X}; 0, \tilde{k}) \subseteq \mathbb{P}^N$. The $(0, k)$-secant variety $\text{Sec}(\tilde{X}; k)$ of \tilde{X} will be called the k-secant variety of \tilde{X}. Set $n_i := \dim(X_i)$. We have $\dim(\text{Sec}(\tilde{X}; k)) \leq \min\{N, \sum_{i=1}^s k_i(n_i + 1) - 1\}$ and $\dim(\text{Sec}(\tilde{X}; t, \tilde{k})) \leq \min\{(t + 1)(N - t), \sum_{i=1}^s k_i n_i + (|\tilde{k}| - t)(t + 1)\}$. We will say that \tilde{X} is \tilde{k}-defective (resp. (t, \tilde{k})-defective) if
\[
\dim(\text{Sec}(\tilde{X}; \tilde{k})) \leq \min\{N, \sum_{i=1}^s k_i(n_i + 1) - 1\}
\]
(resp. $\dim(\text{Sec}(\tilde{X}; t, \tilde{k})) \leq \min\{(t + 1)(N - t), \sum_{i=1}^s k_i n_i + (|\tilde{k}| - t)(t + 1)\}$). If \tilde{X} is \tilde{k}-defective (resp. (t, \tilde{k})-defective) the integer
\[
\delta(\tilde{X}; \tilde{k}) := \sum_{i=1}^s k_i(n_i + 1) - 1 - \dim(\text{Sec}(\tilde{X}; \tilde{k}))
\]
(resp. $\delta(\tilde{X}; t, \tilde{k}) := \sum_{i=1}^s k_i n_i + (|\tilde{k}| - t)(t + 1) - \dim(\text{Sec}(\tilde{X}; t, \tilde{k}))$) will be called the total order of \tilde{k}-deficiency (resp. (t, \tilde{k})-deficiency) of \tilde{X}.

It seems very natural to start the study of (t, \tilde{k})-deficiency from the case $\dim(X_i) = 1$ for every i. For the case in which each X_i is a non-degenerate curve, see Corollary 1 and Theorem 4 in section 3. For a more general deficiency result for non-degenerate curves, see [3]: in the quoted paper we considered the set of all flags of linear spaces contained in a $|\tilde{k}|$-dimensional linear space instead of the set of all t-dimensional linear spaces. Obviously, the interested reader may do other related cases (e.g. some degenerate curves or a surface and $s - 1$ non-degenerate curves). We stress that degenerate varieties may not give defective s-ples (e.g. when $k_i = 1$ for all i take as X_i, $1 \leq i \leq s$, linearly independent linear subspaces). For degenerate varieties, see also Remark 3. We believe that when $s \geq 2$, the mutual position of the varieties is more important than their structure. For examples of deficiency when one of the varieties is a cone, see Remark 1. For a complete analysis of a toy case, see Example 4.

We raise the following question.

Question 1. Fix integers $s \geq 2$, $k_i > 0$, $1 \leq i \leq s$, $t > 0$, and integral varieties $X_i \subset \mathbb{P}^N$, $1 \leq i \leq s$. Set $\tilde{X} := (X_1, \ldots, X_s)$, $\tilde{k} := (k_1, \ldots, k_s)$, $\tilde{Y} := (X_1, \ldots, X_{s-1})$, and $\tilde{m} := (k_1, \ldots, k_{s-1})$. Assume that $\text{Sec}(\tilde{Y}; t, \tilde{m})$ has the expected dimension and that X_s is a curve. Are there reasonable conditions on X_s assuring that $\text{Sec}(\tilde{X}; t, \tilde{k})$ has the expected dimension? More generally, for any \tilde{Y} has $\text{Sec}(\tilde{X}; t, \tilde{k})$ the maximal possible dimension compatible with the dimension of $\text{Sec}(\tilde{Y}; t, \tilde{m})$?

It is well known and easy to show that in the case $t = 0$ a sufficient condition for an affirmative answer to Question 1 is that X_s is a non-degenerate curve (see Corollary 1 and Remark 3 for more precise results). See Theorem 4 for the case $t = 1$ and 3 when $\dim(X_1) = 1$ and each X_i is non-degenerate.

Our main results are non-existence results for the $(1, \tilde{k})$-deficiency of joins of surfaces. In section 2 we will prove the following results.

Theorem 1. Let X_1, X_2 and X_3 be integral non-degenerate surfaces of \mathbb{P}^N, $N \geq 5$, such that $X_i \neq X_j$ for $i \neq j$. Assume $\dim([X_1; X_2]) = 5$ and that X_3 is not
a cone. Set $\vec{k} = (1, 1, 1)$. Then $\vec{X} := (X_1, X_2, X_3)$ is not $(1, \vec{k})$-defective, i.e. $\dim(\Sec(\vec{X}; 1, \vec{k})) = 8$.

Theorem 2. Let X_1 and X_2 be integral non-degenerate surfaces of \mathbb{P}^N, $N \geq 5$, such that $X_1 \neq X_2$. Assume that neither X_1 nor X_2 is a cone. Set $\vec{k} := (2, 1)$. Then $\vec{X} := (X_1, X_2)$ is not $(1, \vec{k})$-defective.

The condition $\dim([X_1; X_2]) = 5$ in the statement of Theorem 2 is very mild (see Remark 1). It implies that neither X_1 nor X_2 is a cone. We do not know if the condition that no X_i is a cone is always necessary (see Remark 1), but certainly X_1, X_2 and X_3 cannot be cones with the same vertex (see Example 1). We do not have any construction (except cones) to obtain defective s-ples.

In section 3 we will give two general results on the (t, \vec{k})-defectivity of varieties of arbitrary dimension: an easy extension of 8 to the case of joins of different varieties (Theorem 3) and a non-defectivity result with respect to lines (Theorem 4).

2. Proofs of Theorems 1 and 2

In this section we will prove Theorems 1 and 2 and give the toy example and the remark on cones promised in the introduction.

For any subset S of \mathbb{P}^N, let (S) be its linear span. We start with a baby example.

Example 1. Fix integers $s \geq 2$, $n_i \geq 2$, $1 \leq i \leq s$, $k_i > 0$, $1 \leq i \leq s$, $N > \min_{1 \leq i \leq s}\{n_i\}$ and t such that $0 \leq t < k_1 + \cdots + k_s - 1$. Fix $P \in \mathbb{P}^N$ and non-degenerate varieties $X_i \subset \mathbb{P}^N$, $1 \leq i \leq s$, such that $\dim(X_i) = n_i$. Set $\vec{X} := (X_1, \ldots, X_s)$ and $\vec{k} := (k_1, \ldots, k_s)$. Assume that each X_i is a cone with vertex containing P. For all hyperplanes H, M of \mathbb{P}^N such that $P \notin H \cup M$ the s-ples $(X_1 \cap H, \ldots, X_s \cap H)$ and $(X_1 \cap M, \ldots, X_s \cap M)$ (respectively seen as s-ples in H and in M) are projectively equivalent (use the linear projection from P). Fix H and set $Y_i := X_i \cap H$ and $\vec{Y} := (Y_1, \ldots, Y_s)$. Fix $S_i \subset Y_i$, $1 \leq i \leq s$, such that $\text{card}(S_i) := k_i$ and $\dim(\langle S_1 \cup \cdots \cup S_s \rangle) = k_1 + \cdots + k_s - 1$. Thus $\dim(\langle S_1 \cup \cdots \cup S_s \cup \{P\} \rangle) = k_1 + \cdots + k_s$, and for every t-dimensional linear space $D \subset \langle S_1 \cup \cdots \cup S_s \rangle$ the $(t+1)$-dimensional linear space $[D; \{P\}]$ contains a $(t+1)$-dimensional family of t-dimensional linear spaces not containing P and mapped isomorphically onto D by the linear projection from P. Fix any such t-dimensional linear space D'. There is a hyperplane M of \mathbb{P}^N such that $D' \subset M$ and $P \notin M$. Set

$$S_i^M := \bigcup_{Q \in S_i} \langle \{Q, P\} \rangle \subset M \subset X_i.$$

Thus $\dim(\langle S_i^M \cup \cdots \cup S_s^M \rangle) = k_1 + \cdots + k_s - 1$, $D' \subset \langle S_1^M \cup \cdots \cup S_s^M \rangle$ and hence $D' \in \Sec(\vec{X}; t, \vec{k})$. Thus if $\Sec(\vec{Y}; t, \vec{k}) = G(t + 1, N)$, then

$$\Sec(\vec{X}; t, \vec{k}) = G(t + 1, N + 1),$$

while if $\Sec(\vec{Y}; t, \vec{k}) \neq G(t + 1, N)$, then $\delta(\vec{X}; t, \vec{k}) = \delta(\vec{Y}; t, \vec{k}) + k_1 + \cdots + k_s - 1 - t$. Thus in the former case (\vec{X}, \vec{k}) is not (t, \vec{k})-defective. In the latter case if $t < k_1 + \cdots + k_s - 1$, then \vec{X} is not (t, \vec{k})-defective. The fact that in the definition of defectivity we have to take the cut-off function min implies that very natural constructions do not always (but only almost always) give degenerate s-ples.
Remark 1. Fix $P \in \mathbb{P}^N$ and also fix a locally closed and irreducible subset T of $G(t+1,N+1)$ such that $P \not\in A$ for every $A \in T$. Let $T \ast P$ be the closure in $G(t+1,N+1)$ of the set of all $B \in G(t+1,N+1)$ contained in some $(t+1)$-dimensional linear space $(A \cup \{P\})$ for some $A \in T$. Fix integers $s \geq 1$, $k_i > 0$, $1 \leq i \leq s$, and integral varieties $X_i \subset \mathbb{P}^N$, $1 \leq i \leq s$. Assume that X_s is a positive-dimensional cone with vertex containing $P \in \mathbb{P}^N$, say $X_s = [D; \{P\}]$ with $\dim(D) = \dim(X_s) - 1$ and $P \notin D$. Set $\tilde{X} := (X_1, \ldots, X_{s-1}, X_s)$ and $\tilde{Y} := (X_1, \ldots, X_{s-1}, D)$. Obviously, $\text{Sec}(\tilde{X}; \tilde{k})$ is the cone with P as vertex and $\text{Sec}(\tilde{Y}; \tilde{k})$ as a basis. Hence \tilde{X} is \tilde{k}-defective if $k_s \geq 2$ and $\dim(\text{Sec}(\tilde{Y}; \tilde{k})) \leq N - 2$. Now assume $t > 0$. Let $\text{Sec}(\tilde{Y}; t, \tilde{k})'$ be the open subset of $\text{Sec}(\tilde{Y}; t, \tilde{k})$ formed by the t-planes not containing P. It is easy to check that $\text{Sec}(\tilde{X}; t, \tilde{k}) = \text{Sec}(\tilde{Y}; t, \tilde{k})' + P$. Since $\dim(G(t+1,t+2)) = t+1$, we obtain $\dim(\text{Sec}(\tilde{X}; t, \tilde{k})) \leq \dim(\text{Sec}(\tilde{Y}; t, \tilde{k})) + t+1$. Hence $\text{Sec}(\tilde{X}; t, \tilde{k})$ is (t, \tilde{k})-defective if $k_s \geq t+2$ and $\dim(\text{Sec}(\tilde{Y}; t, \tilde{k})) + t+1 < (t+1)(N-t)$.

Remark 2. Let $X_i \subset \mathbb{P}^m$, $1 \leq i \leq 3$, $m \geq 3$, be integral surfaces such that $\langle X_1 \cup X_2 \cup X_3 \rangle = \mathbb{P}^m$ and either $X_1 \neq X_2$ or X_1 is not a plane. It is easy to check that for a general $(A_1, A_2, A_3) \in X_1 \times X_2 \times X_3$ and a general $(B_1, B_2, B_3, B_4) \in X_1 \times X_2 \times X_3 \times X_4$ we have $\dim(\langle\{A_1, A_2, A_3\}\rangle) = 2$ and $\dim(\langle\{B_1, B_2, B_3, B_4\}\rangle) = 3$.

Lemma 1. Let $X_i \subset \mathbb{P}^4$, $1 \leq i \leq 2$, be integral non-degenerate surfaces. Then for a general $(A_1, A_2) \in X_1 \times X_2$ we have $\langle\{A_1, A_2\}\rangle \cap (X_1 \cup X_2) = \{A_1, A_2\}$.

Proof. If $X_1 = X_2$, then the lemma is [3], Cor. 1.3, for the invariants $r = 4$, $n = 2$ and $k = 1$. Assume $X_1 \neq X_2$. First assume that $\langle\{A_1, A_2\}\rangle \cap (X_1 \cup X_2)$ contains $B \subset X_1 \\backslash \{A_1\}$. Then for a general $A_2 \subset X_2$ the restriction to X_1 of the linear projection $\mathbb{P}^5 \\backslash \{A_2\} \to \mathbb{P}^3$ from A_2 is not birational. Since $X_2 \neq X_1$, this implies that X_2 is contained in the so-called Segre locus $\Sigma(X_1)$ of X_1, contradicting the inequality $\dim(\Sigma(X_1)) \leq 1$ proved in [3], Th. 1. Similarly, if $\langle\{A_1, A_2\}\rangle \cap (X_1 \cup X_2)$ contains $B \subset X_2 \\backslash \{A_2\}$, we see that X_1 is contained in the Segre locus of X_2, contradicting [3], Th. 1.

Lemma 2. Let $X_i \subset \mathbb{P}^5$, $1 \leq i \leq 3$, be integral surfaces such that $X_i \neq X_j$ and $\langle X_i \cup X_j \rangle = \mathbb{P}^5$ for all $i, j \in \{1, 2, 3\}$ with $i \neq j$. Then for a general $(A_1, A_2, A_3) \in X_1 \times X_2 \times X_3$ we have $\langle\{A_1, A_2, A_3\}\rangle \cap (X_1 \cup X_2 \cup X_3) = \{A_1, A_2, A_3\}$.

Proof. Assume that for a general $(A_1, A_2, A_3) \in X_1 \times X_2 \times X_3$ we have $\langle\{A_1, A_2, A_3\}\rangle \cap (X_1 \cup X_2 \cup X_3) \neq \{A_1, A_2, A_3\}$. Just to fix the notation assume that $\langle\{A_1, A_2, A_3\}\rangle \cap (X_1 \cup X_2 \cup X_3)$ contains $B \subset X_1 \\backslash \{A_3\}$. Let $f : \mathbb{P}^5 \\backslash \{A_3\} \to \mathbb{P}^3$ be the linear projection from the point A_3 and $g : \mathbb{P}^4 \\backslash \{f(A_2)\} \to \mathbb{P}^3$ the linear projection from the point $f(A_2)$. Using that $X_3 \neq X_2$, $X_3 \neq X_1$, X_3 is not contained in $\langle X_i \rangle$ ($i = 1, 2$) if X_i is degenerate and A_3 is general in X_3, we obtain $A_3 \notin X_1 \cup X_2$, $\langle f(X_1) \cup f(X_2) \rangle = \mathbb{P}^4$ and $\dim(\langle f(X_i) \rangle) = \min\{4, \dim(\langle X_i \rangle)\}$ for $i = 1, 2$. Hence either $\langle f(X_1) \rangle = \mathbb{P}^4$ or $f(X_2) \not\subset \langle f(X_1) \rangle$. If $\langle f(X_1) \rangle \neq \mathbb{P}^4$, by the generality of $f(A_2)$ in $f(X_2)$ we obtain that $g(f(X_1))$ is injective (here we just take any $f(A_2) \notin \langle f(X_1) \rangle$), contradicting the existence of A_1 and B (even if A_1 is not assumed to be general in X_1) such that $A_1 \neq B$ and $B \in \langle\{A_1, A_2, A_3\}\rangle \cap (X_1 \cup X_2 \cup X_3)$. Hence we may assume $\langle f(X_1) \rangle = \mathbb{P}^4$. To obtain a contradiction it is sufficient to show that $g(f(X_1))$ is birational. Assume that $g(f(X_1))$ is not birational. Since $f(A_2)$ is a general point of $f(X_2)$ and $f(X_1) \neq f(X_2)$, we obtain that a general point of $f(X_2) \backslash f(X_1)$ is in the Segre locus $\Sigma\langle f(X_1) \rangle$ of $f(X_1)$, contradicting [4], Th. 1.
Lemma 3. Let $X_i \subset \mathbb{P}^5$, $1 \leq i \leq 2$, be integral surfaces such that $X_1 \neq X_2$, $\langle X_1 \cup X_2 \rangle = \mathbb{P}^5$ and $\dim(\langle X_i \rangle) \geq 4$. Then for a general $(A_1, A_2, B) \in X_1 \times X_1 \times X_2$ we have $\langle \{A_1, A_2, B\} \rangle \cap (X_1 \cup X_2) = \{A_1, A_2, A_3\}$.

Proof. Assume that for a general $(A_1, A_2, B) \in X_1 \times X_1 \times X_2$ we have $\langle \{A_1, A_2, B\} \rangle \cap (X_1 \cup X_2) \neq \{A_1, A_2, B\}$. Let $f : \mathbb{P}_2 \setminus \{B\} \rightarrow \mathbb{P}^1$ be the linear projection from B. First assume that $\langle \{A_1, A_2, B\} \rangle \cap (X_1 \cup X_2)$ contains $D \in X_1 \setminus \{A_1, A_2\}$. Since B is general in X_2, $f(X_1)$ spans \mathbb{P}^1. Hence a general secant line of $f(X_1)$ is not a trisecant line ([3], Cor. 1.3). Since $f(D) \in \langle f(A_1), f(A_2) \rangle$, we obtain that either $f(D) = f(A_1)$ or $f(D) = f(A_2)$. Just to fix the notation we assume $f(D) = f(A_1)$. Since A_1 is general in X_1, we obtain that $f|X_1$ is not birational. Hence a general $B \in X_2$ is in the Segre locus $\Sigma(X_1)$ of X_1, contradicting [4], Th. 1. Now assume that $\langle \{A_1, A_2, B\} \rangle \cap (X_1 \cup X_2)$ contains $C \in X_2 \setminus \{B\}$. We obtain that any secant line to $f(X_1)$ intersects $f(X_2 \setminus \{B\})$. Hence $f(X_2) \subseteq \Sigma(f(X_1))$, a contradiction. □

Lemma 4. Let $C, D \subset \mathbb{P}^m$, $m \geq 3$, be integral non-degenerate curves. Assume $C \neq D$. Then a general secant line to C is not secant to D.

Proof. Assume that this is not true and fix a general $P \in C$. By assumption for a general $Q \in C$ the line $\langle \{P, Q\} \rangle$ is secant to D. Hence the linear projection from P is not birational. Thus a general $P \in C$ is contained in the Segre locus $\Sigma(D)$ of D, contradicting [4], Th. 1. □

Lemma 5. Let $X_i \subset \mathbb{P}^5$, $1 \leq i \leq 2$, be integral surfaces such that $\langle X_1 \cup X_2 \rangle = \mathbb{P}^5$ and neither X_1 nor X_2 is a plane. Then for a general $(A_1, A_2, B_1, B_2) \in X_1 \times X_1 \times X_2 \times X_2$ the set $\langle \{A_1, A_2, B_1, B_2\} \rangle \cap (X_1 \cup X_2)$ is finite.

Proof. Assume that the lemma is false and that for instance $\langle \{A_1, A_2, B_1, B_2\} \rangle \cap (X_1 \cup X_2)$ contains an integral curve $C \subset X_2$. Let $f : \mathbb{P}_2 \setminus \{A_1, A_2\} \rightarrow \mathbb{P}^3$ be the linear projection from the line $\langle \{A_1, A_2\} \rangle$. First assume that C is not contained in a plane containing $\langle \{A_1, A_2\} \rangle$. Thus $f(C \setminus \langle \{A_1, A_2\} \rangle)$ is a curve. Since $f(C \setminus \langle \{A_1, A_2\} \rangle)$ is contained in the line $\langle \{f(B_1), f(B_2)\} \rangle$, we obtain $\langle \{f(B_1), f(B_2)\} \rangle \subseteq f(X_2 \setminus \langle \{A_1, A_2\} \rangle) \cap \{f(B_1), f(B_2)\}$ is general in $f(X_2 \setminus \langle \{A_1, A_2\} \rangle)$ or $f(X_2)$ is a plane. Thus $\dim(\langle X_2 \cup \{A_1, A_2\} \rangle) = 4$. By the generality of A_1 and A_2 and the assumption $\langle X_1 \cup X_2 \rangle = \mathbb{P}^5$, we obtain that X_2 is a plane, a contradiction. Now assume that C is contained in a plane M containing $\langle \{A_1, A_2\} \rangle$. Varying A_1 and A_2 we obtain that X_2 contains at least a two-dimensional family of plane curves. If $\dim(\langle X_2 \rangle) \geq 3$, we obtain that C is a plane conic and X_2 is either the Veronese surface or a projection of the Veronese surface ([6], Segre’s lemma at p. 623). We have $M = \langle C \rangle$, $\{A_1, A_2\} \subset M$ and the scheme-theoretic intersection of $\langle \{A_1, A_2\} \rangle$ with C has length two. Hence any secant line to X_1 is secant to X_2. Take a general hyperplane H of \mathbb{P}^5 and apply Lemma 4 to a general projection of the curves $X_1 \cap H$ and $X_2 \cap H$ in \mathbb{P}^3 to obtain a contradiction. Now assume $\dim(\langle X_2 \rangle) \leq 3$. Hence $\dim(\langle X_2 \rangle) = 3$. Since $\langle X_1 \cup X_2 \rangle = \mathbb{P}^5$, for general $(A_1, A_2) \in X_1 \times X_1$ we have $\langle \{A_1, A_2\} \rangle \cap X_1 = 0$, and hence $\langle \{A_1, A_2, B_1, B_2\} \rangle \cap X_2$ is contained in $\langle \{B_1, B_2\} \rangle \cap X_2$ and hence it is finite, a contradiction. □

Look at the set-up of Lemma 4. If X_2 is a plane, then $\langle \{A_1, A_2, B_1, B_2\} \rangle \cap X_2$ is a line.

Proof of Theorem 7 We divide the proof into 9 steps. Steps 1 to 7 are just the translation in our set-up of the corresponding steps in the proof of the Theorem in
section 2 of \cite{3}. The degree 3 curve arising in Step 10 of \cite{3} does not appear in our proof of Theorem\cite{3} because the integer 3 is now distributed between \(X_1, X_2\) and \(X_3\). Instead, in our proof of Theorem\cite{3} we obtain a one-dimensional family \(\Phi\) of lines contained in \(X_3\). Furthermore, in Step 9 we will use again that \(X_2 \neq X_3\). Therefore the proof of Theorem\cite{3} is shorter and easier than the proof of the Theorem in \cite{6}, \S2.

Step 1. Taking a general linear projection into \(\mathbb{P}^5\) we reduce to the case \(N = 5\). By assumption we have \(\dim([X_1; X_2]) = 5\), i.e. \([X_1; X_2] = \mathbb{P}^5\). Let \(J := \{[I; Q] : Q \in \Pi \} \subset \text{Sec}((\overline{X}; \overline{k}) \times \mathbb{P}^5)\) be the incidence variety and \(q : J \to \text{Sec}(\overline{X}; \overline{k}), p : J \to \mathbb{P}^5\) the projections. We have \(\dim(J) = 8\) (see e.g. the proof of \cite{3}, Prop. 1.1). Since \([X_1; X_2] = \mathbb{P}^5\), \(p\) is surjective. Thus for a general \(P \in \mathbb{P}^5\) every irreducible component of \(p^{-1}(P)\) has dimension 3. Fix a general \(P \in \mathbb{P}^5\) and choose one irreducible component \(L_P\) of \(p^{-1}(P)\).

Step 2. Let \(W_P := p(q^{-1}(q(L_P)))\) be the union of all planes belonging to \(L_P\). In this step we will check the existence of a choice of the component \(L_P\) of \(p^{-1}(P)\) such that \(W_P\) is an irreducible variety containing \(X_3\). \(W_P\) is irreducible because \(L_P\) is irreducible and \(q\) is equidimensional and with irreducible fibers. Since \([X_1; X_2] = \mathbb{P}^5\) and \(P\) is general, there are \(A \in X_1\) and \(B \in X_2\) such that \(P \in \{[A, B]\}\). Hence for a general \(Q \subset X_3\) the plane \(\langle A, B, Q \rangle\) belongs to \(\text{Sec}(\overline{X}; \overline{k})\) and contains \(P\), i.e. \(\langle A, B, Q \rangle \in p^{-1}(P)\). Thus \(X_3\) is contained in \(p(q^{-1}(p^{-1}(P)))\). Since \(X_3\) is irreducible, there is at least one irreducible component \(L_P\) of \(p^{-1}(P)\) such that \(X_3 \subseteq p(q^{-1}(q(L_P)))\).

Step 3. In order to obtain a contradiction, from now on we assume that \(\overline{X}\) is \((1, \overline{k})\)-defective. Here we will check that \(\dim(W_P) = 4\). Assume \(\dim(W_P) = 5\). Then for a general \(Q \in \mathbb{P}^5\) there is \(\Pi \in L_P\) such that \(Q \in \Pi\). Thus the line \(\langle P, Q \rangle\) is contained in \(W_P\). By the generality of \(P\) and \(Q\) we obtain \(G(2, 6) = \text{Sec}(\overline{X}; 1, \overline{k})\), a contradiction. Now assume \(\dim(W_P) \leq 3\). Since \(W_P\) is irreducible and contains \(X_3\) (Step 2) and \(P \notin X_3\), \(\dim(W_P) = 3\). For a general \(Q \subset X_3\) there is \(\Pi \in W_P\) such that \(Q \in \Pi\). Thus \(\langle P, Q \rangle \subset \Pi\). Hence \(W_P\) is the cone \([X_3; \{P\}]\). Since \(W_P\) contains a 3-dimensional family of planes, the projection of \(X_3\) from \(P\) is a surface \(Y\) containing a 3-dimensional family of lines. No such surface \(Y\) exists because any two general points of it would be contained in a line contained in \(Y\); hence \(Y\) would be a plane, while a plane does not contain a 3-dimensional family of lines.

Step 4. Choose \(A \in X_1\) and \(B \in X_2\) such that \(P \in \{[A, B]\}\). Since \(P\) is general, the pair \(\langle A, B \rangle\) is general in \(X_1 \times X_2\). From now on we fix a general \(\langle A, B \rangle \in X_1 \times X_2\) and a general \(P \in \{[A, B]\}\). Let \(\Psi\) be the rational map from \(X_3\) into \(G(3, 6)\) that sends a general \(C \subset X_3\) into the plane \(\langle A, B, C \rangle \in G(3, 6)\). Call \(L_P\) the closure of \(\text{Im}(\Psi)\). Clearly, \(L_P\) is irreducible and by construction it lies in \(q(p^{-1}(P))\). We choose as \(L_P\) a component of \(q(p^{-1}(P))\) containing \(L_P\).

First Claim: We have \(\dim(L_P) = 2\). Let \(p(q^{-1}(L_P')) = W_P = \{[A]; [B]; X_3]\). With this choice of \(L_P\) we have \(X_3 \subseteq W_P\), i.e., the statement of Step 2 holds for this component of \(q(p^{-1}(P))\).

Proof of the First Claim It is easy to check (see Lemma \cite{2} or Lemma \cite{3} for stronger statements) that \(\Psi\) has finite fibers. Hence \(\dim(L_P') = 2\). Since \(L_P' \subseteq L_P\), we have \(p(q^{-1}(L_P')) \subseteq W_P\). By the very definition of the rational map \(\Psi\) we have \(p(q^{-1}(L_P')) = \{[A]; [B]; X_3]\). Hence to prove the First Claim it is sufficient to prove that the cone \(\{[A]; [B]; X_3\}\) has dimension 4, i.e. that \(X_3\) is not a cone with vertex containing \(B\) and that the vertex of the cone \(\{[B]; X_3\}\) does not contain
neither a plane nor a smooth quadric surface, is the only positive-dimensional

First Claim: \(\Lambda \) is a 3-dimensional linear space contained in \(W \), and \(W \) is the closure of the union of the spaces \(\Lambda \) as \(\Pi \) varies in \(L_P \setminus L_P' \). For a general \(\Pi \in L_P \) the scheme \(\Lambda \cap X_3 \) contains a curve.

Proof of the First Claim Since \(P \in \Gamma(\{A, B\}) \cap \Pi \) and \(\Pi \notin L_P \), we have \(\dim(\Lambda) = 3 \). By the First Claim for a general \(\Pi \in L_P \) and a general \(Q \in \Pi \) there is \(C \in X_3 \) such that \(Q \in \Gamma(\{A, B, C\}) \). Thus \(\Gamma(\{A, B, Q\}) \subseteq W \) and hence \(\Lambda \subseteq W \). Since \(\Lambda \neq \Lambda' \) for a general pair \((\Pi, \Pi') \in L_P \times L_P \) and \(\dim(W) = 4 \), \(W \) is the closure of the union of the spaces \(\Lambda \) as \(\Pi \) varies in \(L_P \setminus L_P' \). Since \(X_3 \subseteq W \), for a general \(\Pi \) the set \(\Lambda \cap X_3 \) contains a curve, proving the First Claim.

Step 5. Here we will check that \(\Lambda \cap \Lambda' = \Gamma(\{A, B\}) \). Assume on the contrary that \(\Lambda \cap \Lambda' \neq \Gamma(\{A, B\}) \). By the linear Lemma in [6], \(\dim(L_P) = 4 \), this implies that either all 3-spaces \(\Lambda \) are contained in a 4-dimensional linear space \(M \) or for every \(R \in L_P \setminus L_P' \), the 3-space \(\Lambda_R \) contains \(V \). The first possibility cannot occur because \(X_3 \) is non-degenerate and contained in \(W \) (Step 2) and \(W \) is the closure of the union of all \(\Lambda_R \) (First Claim). Assume that for every \(R \in L_P \setminus L_P' \), the 3-space \(\Lambda_R \) contains \(V \). The linear projection \(\alpha : X_3 \setminus X_3 \cap V \to \mathbb{P}^2 \) is dominant because the last assertion of the First Claim implies that \(\alpha \) does not contract infinitely many lines. Hence the linear projection of \(X_3 \) from the line \(\langle\{A, B\}\rangle \) into \(\mathbb{P}^3 \) is a cone. By the Lemma proved in [6], Step 5 at p. 625, \(X_3 \) is a cone, a contradiction.

Step 7. Here we will check that \(\langle\{A, B\}\rangle \) is the only line containing \(P \) and intersecting \(X_1 \setminus X_1 \cap X_2 \) and \(X_2 \setminus X_1 \cap X_2 \). Since the tangent developable of \(X_3 \) has dimension 4 and \(P \) is general, \(P \) is not contained in any line tangent to \(X_3 \) at one of its smooth points. Since \(\dim(L_P) = 4 \), the set \(D \) of all lines containing \(P \) and intersecting both \(X_1 \setminus X_1 \cap X_2 \) and \(X_2 \setminus X_1 \cap X_2 \) is finite. Now we will check that \(D = \{\langle\{A, B\}\rangle\} \). Take any \(D \in D \). By the finiteness of \(D \), \(D \) must be fixed as \(\Pi \) varies. Hence \(D \subseteq \Lambda \cap \Lambda' = \Gamma(\{A, B\}) \) (Step 6).

Step 8. Call \(\Gamma_0 \) the union of the one-dimensional components of \(\Lambda \cap X_3 \). Here we will check that for general \(\Pi \) the curve \(\Gamma_0 \) is a line. Recall that \(W \setminus \Pi \) is the closure of the union of all spaces \(\Lambda \) with \(\Pi \in L_P \). Let \(Y \subseteq \mathbb{P}^m \) be an irreducible \(m \)-dimensional variety, \(m \geq 2 \), containing a two-dimensional family of \((m-1)\)-dimensional linear spaces. By [6], Lemma in Step 9 of §2, \(Y \) is a linear space. Thus \(W \setminus \Pi \) contains only a one-dimensional family of distinct 3-spaces \(\Lambda \). Since \(\dim(L_P) = 3 \) and each plane of \(L_P \) belongs to some 3-space \(\Lambda \) contained in \(W \), it follows that the general plane \(U \) of \(\Lambda \) containing \(P \) intersects \(X_1 \), \(X_2 \) and \(X_3 \) and that, for general \(P, \Pi \) and \(U \), it intersects each \(X_i \) exactly at one point (see [6], Cor. 1.3). Hence \(\Gamma_0 \) is a line. Hence the variety \(X_3 \) contains an irreducible family \(\Phi \) of lines \(\Gamma_0, \Pi \) general in \(L_P \), with \(\Gamma_0 \subseteq \Lambda \). Since \(\Lambda \cap \Lambda' = \Gamma(\{A, B\}) \) for a general pair \((\Pi, \Pi') \) (Step 6), we have \(\dim(\Phi) > 0 \). Since \(X_3 \) is not a plane, we have \(\dim(\Phi) = 1 \). If all lines \(\Gamma_0 \) pass through a common point \(Q \), then \(X_3 \) is a cone with vertex \(Q \), contradicting our assumptions. Since not all lines \(\Gamma_0 \) pass through a common point and \(X_3 \) is not a plane, we have \(\Gamma_0 \cap \Gamma_0' = \emptyset \) for a general pair \((\Pi, \Pi') \) (Linear Lemma in [6], ¶1). We now give a side remark. Since \(X_3 \) is neither a plane nor a smooth quadric surface, \(\Phi \) is the only positive-dimensional
irreducible family of lines contained in X_3. Hence Φ does not depend on the choice of P, A and B. For a general $B_3 \in X_3$ there is a unique line $D(B_3)$ such that $B_3 \in D(B_3) \subset X_4$. Since Φ covers X_3, we have $D(B_3) \in \Phi$. Notice that $D(B_3)$ depends only on B_3 and X_3, not on X_1, X_2 and the choices of A, B and P that we made to construct Φ.

Step 9. Take a general triple $(A_1, A_2, A_3) \in X_1 \times X_2 \times X_3$. Hence $\langle \{A_1, A_2, A_3\} \rangle$ is a plane and a general element of $\text{Sec}(X; 2, k)$, and hence $\langle \{A_1, A_2, A_3\} \rangle \cap X_1 = \{A_i\}$ (Lemma 2). A general $P \in \langle \{A_1, A_2, A_3\} \rangle$ may be considered as a general element of \mathbb{P}^5 because $[X_1; [X_2; X_3]] = \mathbb{P}^5$. Since $[X_1; X_2] = \mathbb{P}^5$, there is $(B_1, B_2) \in X_1 \times X_2$ such that $B_1 \neq B_2$ and $P \in \langle \{B_1, B_2\} \rangle$: furthermore, there are only finitely many such pairs (B_1, B_2). Conversely, given a general quadruple $(A'_1, A'_2, B'_1, B'_2) \in X_1 \times X_1 \times X_2 \times X_2$, the 3-dimensional linear space $\langle \{A'_1, A'_2, B'_1, B'_2\} \rangle$ intersects X_3 in a non-empty set and one point of this set, for fixed A'_1, A'_2 but for a general pair (B'_1, B'_2), may be considered as a general point A'_3 of X_3; furthermore, for general A'_1 and A'_2 we may find A'_3 not collinear with A'_1 and A'_2. Hence $\langle \{A'_1, A'_2, A'_3\} \rangle$ is a plane of $\langle \{A'_1, A'_2, B'_1, B'_2\} \rangle$, and thus it intersects the line $\langle \{B'_1, B'_2\} \rangle$. Since $\dim(\langle \{A'_1, A'_2, B'_1, B'_2\} \rangle) = 3$, for general B'_1 and B'_2 we have $\langle \{A'_1, A'_2\} \rangle \cap \langle \{B'_1, B'_2\} \rangle = \emptyset$. Thus we may do the construction of Step 4 starting from B'_1, B'_2 and P instead of A, B and P.

By construction $\langle \{A'_1, A'_2, A'_3\} \rangle \in \Lambda_P \setminus \Lambda_{P'}$. Thus by Step 8 the 3-dimensional linear space G spanned by B'_1, B'_2 and $\langle \{A'_1, A'_2, A'_3\} \rangle$ intersects X_3 in a line $D(A'_1, B'_1, A'_2, B'_2) \in \Phi$. However, $G = \langle \{A'_1, A'_2, B'_1, B'_2\} \rangle$. Thus for a general quadruple $(A'_1, A'_2, B'_1, B'_2) \in X_1 \times X_1 \times X_2 \times X_2$ the set $X_3 \cap \langle \{A'_1, A'_2, B'_1, B'_2\} \rangle$ contains a line. Furthermore, $\langle \{A'_1, A'_2, B'_1, B'_2\} \rangle$ is spanned by $D(A'_1, B'_1, A'_2, B'_2)$, A'_1 and A'_2. Since $\dim(\Phi) = 1$, we may find a one-dimensional irreducible family, Δ, of pairs $(B''_1, B''_2) \in X_1 \times X_2$ such that $X_3 \cap \langle \{A'_1, A'_2, B'_1, B'_2\} \rangle = D(A'_1, B'_1, A'_2, B'_2)$ for every $(B''_1, B''_2) \in \Delta$. Hence $\langle \{A'_1, A'_2, B'_1, B'_2\} \rangle$ contains all such pairs (B''_1, B''_2), contradicting Lemma 5 and hence concluding the proof.

Proof of Theorem 2 If $X \subset \mathbb{P}^m$, $m \geq 5$, is a non-degenerate surface such that $\dim([X; X]) = 4$, then X is either a cone or a Veronese surface (2). Notice that the role of the surface X_3 in the proof of Theorem 1 was quite different from the roles of X_1 and X_2, while the roles of X_1 and X_2 were exactly the same. The same proof works in the case $X_1 = X_2$ (and proves Theorem 2), except that in Steps 4 and 9 we need to quote Lemma 8 instead of Lemma 2 and that in the proof of Theorem 1 we assumed and heavily used that $\dim([X_1; X_2]) = 5$. Hence to complete the proof of Theorem 2 it is sufficient to check it when $\dim([X_1; X_1]) \leq 4$ and X_1 is not a cone, i.e. when X_1 is the Veronese surface. Assume $N = 5$ and let $S \subset \mathbb{P}^5$ be the Veronese surface. Let $Y \subset \mathbb{P}^5$ be an integral non-degenerate surface with $Y \neq S$ and Y not a cone. The pair (S, Y) is not a $(1, 2, 1)$-defective pair if and only if a general line $D \subset \mathbb{P}^5$ is contained in a plane spanned by two points of S and one point of Y. Let $Z \subset \mathbb{P}^5$ be the secant variety of S. Thus S is the hypersurface of \mathbb{P}^5 union all planes spanned by the conics contained in S. Let $D \subset \mathbb{P}^5$ be a general line. Fix $P \in D \cap Z$ and call $E \subset Z$ the plane such that $P \in E$ and $E \cap S = C$, where C is a smooth conic. Set $M := \langle E \cup D \rangle$. Thus $\dim(M) = 3$. Take $Q \in M \cap Y$ and set $F := E \cap \langle \{Q\} \cup D \rangle$. Hence F is the intersection of two planes contained in M. The linear space M moves if we move D among the lines through P. For a general line D containing P the set F is a line not tangent to C.

Hence the general line D containing P is contained in the plane spanned by Q and the two points of $F \cap C \subset S$, concluding the proof.

3. Further results on (t,\tilde{k})-defectivity

Let $\sigma : \mathbb{P}^t \times \mathbb{P}^N \to \mathbb{P}^{tN+tN}$ be the Segre embedding. The proof of [8], Th. 2.1 (i.e. a computation of a certain Jacobian matrix), gives the following result.

Theorem 3. \tilde{X} is (t,\tilde{k})-defective if and only if $\sigma(\mathbb{P}^t \times \tilde{X}) := (\sigma(\mathbb{P}^t \times X_1), \ldots, \sigma(\mathbb{P}^t \times X_s))$ is \tilde{k}-defective and the total order of (t,\tilde{k})-defectivity of \tilde{X} and the \tilde{k}-defectivity of $\sigma(\mathbb{P}^t \times \tilde{X})$ are the same.

To obtain results for the (t,\tilde{k})-defectivity it is essential to have results for the \tilde{k}-defectivity of other joins; Theorem 3 has just one reason. Since the role of the varieties X_1, \ldots, X_s is not the same if $k_i \neq k_j$ for some i, j or the geometric properties (and even the dimensions) of the varieties X_1, \ldots, X_s may be quite different (as, for instance, in Question [4]), we introduce the following definition.

Definition 1. Fix $N, s, k_i, n_i, 1 \leq i \leq s$, and t as above and assume that $\sum_{i=1}^s k_i(n_i + 1) \leq N - 1$. Fix an integer i with $1 \leq i \leq s$ such that $k_i > 0$. Set $\tilde{k}(i) := (k'_1, \ldots, k'_s)$ with $k'_j = k_j$ if $j \neq i$ and $k'_i = k_i - 1$. Set $\delta(\tilde{X}; \tilde{k}; i) := \delta(\tilde{X}; \tilde{k}) - \delta(\tilde{X}; \tilde{k}(i))$. The integer $\delta(\tilde{X}; \tilde{k}; i)$ will be called the \tilde{k}-defect of \tilde{X} for the factor i.

The proof of [2], Th. 1.1, gives the following result.

Lemma 6. Fix N, \tilde{k}, i and \tilde{X} as above and assume that each variety X_j is non-degenerate. Assume $\delta(\tilde{X}; \tilde{k}; i) > 0$. Fix a general $P_{u,v} \in X_u, 1 \leq u \leq s$ and $1 \leq v \leq k_u$, and let A be the linear span of the tangent spaces $(TX_u)_{P_{u,v}}, 1 \leq u \leq s$ and $1 \leq v \leq k_u$. Then the general hyperplane H of \mathbb{P}^N containing A is tangent to X_i at least along an irreducible variety of dimension $\delta(\tilde{X}; \tilde{k}; i)$ containing one of the points $P_{i,j}$ with $1 \leq j \leq k_i$.

Corollary 1. Fix N, \tilde{k}, i and \tilde{X} as above and assume that each variety X_j is non-degenerate. Assume $\delta(\tilde{X}; \tilde{k}; i) > 0$. Then $\dim(X_i) > \delta(\tilde{X}; \tilde{k}; i)$ and in particular X_i is not a curve.

Remark 3. In Lemma 6 and Corollary 1 we may substitute the condition that each variety X_j is non-degenerate with the condition that for each proper subspace M of \mathbb{P}^N containing some of the varieties X_j, say X_j for $j \in S \subset \{1, \ldots, s\}$, we have $\sum_{j \in S} k_j(\dim(X_j) + 1) \leq \dim(M)$.

Theorem 4. Fix an integer $s \geq 2$, positive integers k_1, \ldots, k_s such that $k_s = 1$ and integral subvarieties $X_i \subset \mathbb{P}^N$ such that X_j is non-degenerate for every $j < s$ and $\dim(X_s) = 1$. Set $\tilde{k} := (k_1, \ldots, k_s)$, $\tilde{k}(s) := (k_1, \ldots, k_{s-1}), \tilde{X} := (X_1, \ldots, X_s)$ and $\tilde{X}(s) := (X_1, \ldots, X_s)$. Assume that $\tilde{X}(s)$ is neither $\tilde{k}(s)$-defective nor $(1, \tilde{k}(s))$-defective and that $\text{Sec}(\tilde{X}(s); \tilde{k}(s))$ is not a cone with vertex containing X_s. Then \tilde{X} is not $(1, \tilde{k})$-defective.

Proof. Assume that \tilde{X} is $(1, \tilde{k})$-defective. A general line $L \subset \text{Sec}(\tilde{X}; 1, \tilde{k})$ is obtained by taking general $P_{i,j} \in X_i, 1 \leq i \leq s, 1 \leq j \leq k_i$ and then taking a general line L contained in the $|\tilde{k}|$-dimensional linear space spanned by the points $P_{i,j}$. Let
$A(s)$ be the join of all points $P_{i,j}$ with $1 \leq i \leq s - 1$ and $1 \leq j \leq k_i$. Set $Q(L) := A(s) \cap L$. Hence $Q(L) \in \text{Sec}(\tilde{X}(s); \tilde{k}(s))$. By the generality of the points $P_{i,j}$ and of the line L the point $Q(L)$ may be considered as a general point of $\text{Sec}(\tilde{X}(s); \tilde{k}(s))$. By assumption there is a one-dimensional family of $[\tilde{k}]$-planes, say $\{\Pi_t\}_{t \in T}$ with T irreducible curve such that each Π_t intersects each X_i at k_i distinct points, say $P_{t,i}(t) \subset \Pi_t$ for every t, and there is $o \in T$ such that $P_{t,i}(o) = P_{i,j}$ for all i,j. Let $A(s,t)$ be the join of all points $P_{i,j}(t)$ with $1 \leq i \leq s - 1$ and $1 \leq j \leq k_i$. Set $Q(L,t) := A(s,t) \cap L$. Hence $Q(L,t) \in A(s,t)$. First assume $Q(L,t) = Q(L)$ for every t. Since $Q(L,t) := A(s,t) \cap L$, this implies that $Q(L)$ is contained in infinitely many $([\tilde{k}] - 1)$-dimensional linear spaces belonging to $\text{Sec}(\tilde{X}(s); [\tilde{k}(s)] - 1, \tilde{k}(s))$. Since $Q(L)$ is general in $\text{Sec}(\tilde{X}(s); \tilde{k}(s))$, this implies $\text{dim}(\text{Sec}(\tilde{X}(s); \tilde{k}(s)))) \leq \sum_{i=1}^{s-1} k_i(\text{dim}(X_i) + 1) - 2$, a contradiction. If $Q(L,t) \neq Q(L)$ for general $t \in T$, then L is contained in $\text{Sec}(\tilde{X}(s); \tilde{k}(s))$. By the generality of L we obtain $\text{Sec}(\tilde{X}; \tilde{k}) = \text{Sec}(\tilde{X}(s); \tilde{k}(s))$, i.e. $\text{Sec}(\tilde{X}(s); \tilde{k}(s))$ is a cone with vertex containing X_s, a contradiction. \hfill \square

REFERENCES

Department of Mathematics, University of Trento, 38050 Povo, Trento, Italy

E-mail address: ballico@science.unitn.it