A NOTE ON PRINCIPAL PARTS ON PROJECTIVE SPACE AND LINEAR REPRESENTATIONS

HELGE MAAKESTAD

(Communicated by Michael Stillman)

Abstract. Let H be a closed subgroup of a linear algebraic group G defined over a field of characteristic zero. There is an equivalence of categories between the category of linear finite-dimensional representations of H, and the category of finite rank G-homogeneous vector bundles on G/H. In this paper we will study this correspondence for the sheaves of principal parts on projective space, and we describe the representation corresponding to the principal parts of a line bundle on projective space.

1. Introduction

In this note we will study the vector bundles of principal parts $P^k(O(n))$ of a line bundle on projective space over a field F of characteristic zero from a representation theoretic point of view. We consider projective N-space as a quotient $SL(V)/P$, where V is an $(N + 1)$-dimensional vector space over F, and P is the subgroup of $SL(V)$ stabilizing a line L in V. There is an equivalence of categories between the category of finite rank $SL(V)$-homogeneous vector bundles on $SL(V)/P = \mathbb{P}(V^*)$ and the category of linear finite-dimensional representations of P. The principal parts $P^k(O(n))$ are $SL(V)$-homogeneous vector bundles on $\mathbb{P}(V^*)$, and the novelty of this note is that we describe the P-representation corresponding to the principal parts. The main result is Theorem 2.4, which says the following: Let L^* be the dual of the P-module L. Then for all $1 \leq k < n$, the P-representation corresponding to $P^k(O(n))$ is $S^{n-k}(L^*) \otimes S^k(V^*)$. As a corollary, we obtain the splitting type of $P^k(O(n))$ on $\mathbb{P}(V^*)$ for all $1 \leq k < n$, and recover results obtained in [6], [7], [8] and [9].

2. Principal parts on projective space

In this section we give the representation corresponding to $P^k(O(n))$ on $\mathbb{P}(V^*)$ for all $1 \leq k < n$, where V is an F-vector space of dimension $N + 1$ and F is a field of characteristic 0. A variety is an integral scheme of finite type over F.

Received by the editors May 16, 2002 and, in revised form, July 7, 2003.
2000 Mathematics Subject Classification. Primary 14L30, 20C15.
Key words and phrases. Homogeneous spaces, homogeneous vector bundles, principal parts, linear representations, splitting type.

This work was partially supported by the Emmy Noether Research Institute for Mathematics, the Minerva Foundation of Germany, the Excellency Center “Group Theoretic Methods in the Study of Algebraic Varieties” of the Israel Science Foundation and the EAGER Foundation (EU network, HPRN-CT-2000-00099).

©2004 American Mathematical Society
We will consider closed points when we talk about points of a scheme. Let V be a finite-dimensional vector space over F. We let $GL(V)$ denote the group of all invertible linear transformations of V. It is an algebraic group in the sense of [2], Chapt. 1. A linear algebraic group is a closed subgroup of $GL(V)$. Let $SL(V)$ be the linear algebraic group of linear transformations of V with determinant 1. Let L in V be a line, and P the closed subgroup of $SL(V)$ stabilizing L. Then the quotient $SL(V)/P$ (which exists by [2], Theorem 6.8) is isomorphic to $P(V^*)$, the projective space of lines in V (see [1], Section 4.2). This works over any field, not only the complex numbers. There exists a natural left $SL(V)$-action on $P(V^*)$, making it into a homogeneous space for $SL(V)$. Also by [1], Chapt. 4, there exists an equivalence of categories between the category of finite rank homogeneous vector bundles on $SL(V)/P$ and the category of linear finite-dimensional representations of P, and under this correspondence the dimension of the representation gives the rank of the corresponding vector bundle. Hence any character of P gives a homogeneous line bundle on $SL(V)/P$. The line L corresponds to a character of P, and the bundle corresponding to the dual line L^* is the line bundle $O(1)$ on $P(V^*)$ (see [1], Section 4.2). It is also a standard fact that any linear finite-dimensional representation ρ of P lifting to a representation $\tilde{\rho}$ of $SL(V)$ corresponds to a trivial abstract vector bundle on $P(V^*)$. There exists on any scheme an equivalence of categories between the category of locally free finite rank sheaves and the category of finite rank vector bundles; hence we will use these two notions interchangeably.

Pick a basis e_0, \ldots, e_N for V. Let x_0, \ldots, x_N be the dual basis, and let L be the line spanned by e_0. Having chosen a basis for V, it follows that $SL(V)$ may be identified with the group of square rank $N + 1$ matrices with determinant equal to 1. The group P may be identified with the subgroup of $SL(V)$ consisting of matrices g of the form

$$g = \begin{pmatrix} a & * & \cdots & * \\ 0 & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n1} & \cdots & a_{nn} \end{pmatrix}. $$

The one-dimensional representation $\chi : P \to GL(S^n(L^*))$ corresponding to the line bundle $O(n)$ is given by $\chi(g) = a^{-n}$.

Let X be a smooth variety of dimension d and consider the diagonal Δ in $X \times X$. Let I be the sheaf of ideals of $O_{X \times X}$ defining the diagonal Δ, and define O_{Δ^k} to be $O_{X \times X}/I^{k+1}$.

Definition 2.1. Let p, q be the projection maps from $X \times X$ to X, and let E be an O_X-module. Define $P^k(E) = p_*(O_{\Delta^k} \otimes q^*E)$ to be the kth order principal parts of the module E. We put $P^k(O_X) = P^k$.

Note that by [6], if the rank of E is e, $P^k(E)$ is a vector bundle of rank $e^{(d+k)}$ on X. Assume that G is an algebraic group, and that X is a homogeneous space for G. Assume furthermore that E is a G-homogeneous vector bundle on X; then it follows that $P^k(E)$ is again a G-homogeneous vector bundle on X. Consider the line bundle $O(n)$ on $P(V^*) = SL(V)/P$; then $O(n)$ is an $SL(V)$-homogeneous line bundle on $P(V^*)$ for all n, and we may consider the $SL(V)$-homogeneous vector bundle $P^k(O(n))$. We want to compute the representation ρ of P corresponding to the homogeneous vector bundle $P^k(O(n))$ for all $1 \leq k < n$ on $P(V^*)$. Let, in the following, $X = P(V^*)$ and consider the projection maps p, q from $X \times X$ to
Let I in $\mathcal{O}_{X \times X}$ be the ideal of the diagonal. We have an exact sequence of $SL(V)$-homogeneous vector bundles on $X \times X$:

\begin{equation}
(2.1.1) \quad 0 \to I^{k+1} \to \mathcal{O}_{X \times X} \to \mathcal{O}_{\Delta_k} \to 0.
\end{equation}

Apply the functor $p_*(- \otimes q^*\mathcal{O}(n))$ to the sequence $(2.1.1)$ to get a long exact sequence

\begin{equation}
(2.1.2) \quad 0 \to p_*(I^{k+1} \otimes q^*\mathcal{O}(n)) \to p_*q^*\mathcal{O}(n) \to \mathcal{P}^k(\mathcal{O}(n))
\end{equation}

of vector bundles. The sequence $(2.1.2)$ is a sequence of vector bundles because all sheaves in the sequence are coherent, and it is a standard fact that a homogeneous coherent sheaf on a homogeneous space is locally free. Since the sequence $(2.1.2)$ is a sequence of vector bundles, we get an exact sequence of P-representations when we pass to the fiber at π.

Consider the diagram

$$
\begin{array}{ccc}
\text{Spec}(\kappa(\pi)) \times X & \xrightarrow{\pi} & X \times X \\
\downarrow & & \downarrow \pi \\
\text{Spec}(\kappa(\pi)) & \xrightarrow{i} & X
\end{array}
$$

Then by [5], Chapt. III, Sect. 12, we get maps

$$
\phi^i : R^i p_*(I^{k+1} \otimes q^*\mathcal{O}(n))(\pi) \to R^i \pi_*(j^*(I^{k+1} \otimes q^*\mathcal{O}(n)))
$$

of \mathcal{O}_X-modules. Put, for any $\mathcal{O}_{X \times X}$-module \mathcal{E},

$$
h^i(y, E) = \dim_{\kappa(y)} H^i(X_y, \mathcal{E}_y),
$$

where X_y is the fiber $p^{-1}(y)$ and \mathcal{E}_y is the restriction of \mathcal{E} to X_y. We see that

$$
h^i(y, I^{k+1} \otimes q^*\mathcal{O}(n)) = \dim_{\kappa(y)} H^i(X, m_y^{k+1} \otimes \mathcal{O}(n))
$$

is a constant function of y for $i = 0, 1, \ldots$ for the following reason: Consider the commutative diagram

$$
\begin{array}{ccc}
\text{Spec}(\kappa(y)) \times X & \xrightarrow{\bar{g}} & \text{Spec}(\kappa(gv)) \times X \\
\downarrow f & & \downarrow k \\
X \times X & \xrightarrow{g} & X \times X
\end{array}
$$

where the action of $SL(V)$ on $X \times X$ is given by $g(x, y) = (gx, gy)$. In general, if $G \times Y \to Y$ is an algebraic group acting on a scheme Y, and \mathcal{E} is a G-linearized sheaf on Y, then there exists an isomorphism $I : \sigma^* \mathcal{E} \to p^* \mathcal{E}$, where $p : G \times Y \to Y$ is the projection map. It follows that for all $g \in G$ we get an isomorphism $g^* \mathcal{E} \cong \mathcal{E}$ of sheaves. Then, since $\mathcal{O}(n)$ and $I^{k+1} \otimes q^*\mathcal{O}(n)$ are $SL(V)$-homogeneous sheaves, we have an isomorphism

$$
\bar{g}^* (m_y^{k+1} \otimes \mathcal{O}(n)) = j^* g^* (I^{k+1} \otimes q^*\mathcal{O}(n)) = m_y^{k+1} \otimes \mathcal{O}(n);
$$

hence since \bar{g} is an isomorphism, we see that we have an isomorphism

$$
m_y^{k+1} \otimes \mathcal{O}(n) \cong m_y^{k+1} \otimes \mathcal{O}(n).$$
of sheaves for all g in $SL(V)$. It follows that
\[
\dim_{\kappa(y)} H^i(X, m_y^{k+1} \otimes \mathcal{O}(n)) = \dim_{\kappa(\varphi y)} H^i(X, m_y^{k+1}, \mathcal{O}(n))
\]
for all g in $SL(V)$; hence by [5], Chapt. III, Corr. 12.9, it follows that the maps ϕ^i are isomorphisms for $i = 0, 1, \ldots$. Here m_y is the sheaf of ideals corresponding to the point y in X. We get an exact sequence
\[
0 \twoheadrightarrow H^0(X, \mathcal{O}(n)) \otimes m_y^{k+1} \rightarrow H^0(X, \mathcal{O}(n)) \rightarrow \mathcal{P}^k(\mathcal{O}(n))(\varphi)
\]
\[
\rightarrow H^1(X, \mathcal{O}(n)) \otimes m_y^{k+1} \rightarrow H^1(X, \mathcal{O}(n)) \rightarrow \cdots
\]
of P-representations.

Lemma 2.2. For all $1 \leq k < n$ we have that $H^1(X, \mathcal{O}(n)) \otimes m_y^{k+1} = 0$.

Proof. Consider the exact sequence (2.1.3). We prove that
\[
\dim_F H^0(X, \mathcal{O}(n)) - \dim_F H^0(X, \mathcal{O}(n)) \otimes m_y^{k+1} = \dim_F \mathcal{P}^k(\mathcal{O}(n))(\varphi),
\]
and then the result follows by counting dimensions. We have that $H^0(X, \mathcal{O}(n))$ equals $S^n(V^*)$, where V^* is the F-vector space on the basis x_0, \ldots, x_N. We also see that $H^0(X, \mathcal{O}(n) \otimes m_y^{k+1})$ equals $m_y^{k+1} S^{n-(k+1)}(V^*)$ considered as a subvector-space of $S^n(V^*)$. Here m_y is the F-vector space on the basis x_1, \ldots, x_N and $m_y^{k+1} S^{n-(k+1)}(V^*)$ is the image of the natural map
\[
S^{k+1}(m) \otimes S^{n-(k+1)}(V^*) \rightarrow S^n(V^*).
\]
Write V^* as the direct sum $Fx_0 \oplus m$. Then it follows that
\[
m_y^{k+1} S^{n-(k+1)}(V^*) = x_0^{n-(k+1)} m_y^{k+1} \oplus \cdots \oplus x_0 m_y^{n-1} \oplus m;
\]

hence we see that the dimension of $m_y^{k+1} S^{n-(k+1)}(V^*)$ equals $\sum_{i=k+1}^n \binom{i+N-1}{N-1}$. We also see that the dimension of $S^n(V^*)$ equals $\sum_{i=0}^n \binom{i+N-1}{N-1}$, and it follows that
\[
\dim_F S^n(V^*) - \dim_F m_y^{k+1} S^{n-(k+1)}(V^*) = \sum_{i=0}^k \binom{i+N-1}{N-1},
\]
It follows that
\[
\sum_{i=0}^k \binom{i+N-1}{N-1} = \binom{k+N}{N} = \dim_F \mathcal{P}^k(\mathcal{O}(n))(\varphi),
\]
and we have proved that
\[
\dim_F H^0(X, \mathcal{O}(n)) - \dim_F H^0(X, \mathcal{O}(n)) \otimes m_y^{k+1} = \dim_F \mathcal{P}^k(\mathcal{O}(n))(\varphi).
\]
The result follows from the fact that the sequence (2.1.3) is exact and that $H^1(X, \mathcal{O}(n)) = 0$ for $n \geq 1$. \qed

Note that by Lemma 222 and the sequence (2.1.3), there exists for all $1 \leq k < n$ an exact sequence of P-representations
\[
0 \rightarrow H^0(X, \mathcal{O}(n)) \otimes m_y^{k+1} \rightarrow H^0(X, \mathcal{O}(n)) \rightarrow \mathcal{P}^k(\mathcal{O}(n))(\varphi) \rightarrow 0.
\]
Since the representation $H^0(X, \mathcal{O}(n)) \otimes m_y^{k+1}$ equals $m_y^{k+1} S^{n-(k+1)}(V^*)$ as a subrepresentation of $H^0(X, \mathcal{O}(n)) = S^n(V^*)$, it follows that we have an exact sequence of P-representations
\[
0 \rightarrow m_y^{k+1} S^{n-(k+1)}(V^*) \rightarrow S^n(V^*) \rightarrow \mathcal{P}^k(\mathcal{O}(n))(\varphi) \rightarrow 0.
\]
From the exact sequence
\[0 \to m \to V^* \to V^*/m \to 0, \]
where \(m \) is the \(F \)-vector space on \(x_1, \ldots, x_N \), we see that the representation \(V^*/m \) is the representation corresponding to the module \(L^* \) of \(P \), giving the line bundle \(\mathcal{O}(1) \) on \(X = SL(V)/P \).

Lemma 2.3. For all \(1 \leq k < n \) there exists a surjective map of \(P \)-representations
\[\phi : S^n(V^*) \to S^{n-k}(L^*) \otimes S^k(V^*). \]

Proof. Recall that we have chosen a basis \(e_0, \ldots, e_N \) for \(V \), with the property that \(\pi_0 \) is a basis for \(L^* \). The \(P \)-representation \(m \) with basis \(x_1, \ldots, x_N \) gives an exact sequence
\[0 \to m \to V^* \to L^* \to 0 \]
of \(P \)-representations. Define a map
\[\phi : S^n(V^*) \to S^{n-k}(L^*) \otimes S^k(V^*) \]
as follows: \(\phi(f) = \pi_0^{n-k} \otimes \partial_0^{n-k}(f) \), where \(\partial^{n-k}_0 \) is the \(n-k \) times partial derivative with respect to the \(x_0 \)-variable. Let \(g \) be an element of \(P \). Then by induction on the degree of the differential operator \(\partial^{n-k}_0 \) and applying the chain rule for derivation, it follows that
\[
\phi(gf) = \pi_0^{n-k} \otimes \partial_0^{n-k}(gf) = \pi_0^{n-k} \otimes a^{-(n-k)}g(\partial_0^{n-k}f) = a^{-(n-k)}\pi_0^{n-k} \otimes \partial_0^{n-k}(gf) = g\phi(f),
\]
and we see that \(\phi \) is \(P \)-linear. It is clearly surjective, and the lemma follows. \(\square \)

Theorem 2.4. For all \(1 \leq k < n \), the representation corresponding to \(P^k(\mathcal{O}(n)) \) is \(S^{n-k}(L^*) \otimes S^k(V^*) \).

Proof. By Lemma 2.3 there exists a surjective map of \(P \)-representations
\[\phi : S^n(V^*) \to S^{n-k}(L^*) \otimes S^k(V^*). \]

We claim that \(m^{k+1}S^{n-(k+1)}(V^*) \) equals \(\ker \phi \): We first prove the inclusion
\[m^{k+1}S^{n-(k+1)}(V^*) \subseteq \ker \phi. \]

Pick a monomial \(x_0^{p_0}x_1^{p_1} \cdots x_N^{p_N} \) in \(m^{k+1}S^{n-(k+1)}(V^*) \); then \(p_0 + \cdots + p_N = n \) and \(p_0 < n-k \). These monomials form a basis for \(m^{k+1}S^{n-(k+1)}(V^*) \). We see that \(\partial^{n-k}_0(x_0^{p_0} \cdots x_N^{p_N}) \) is zero; hence, since \(\phi \) is a linear map, it follows that we have an inclusion
\[m^{k+1}S^{n-(k+1)}(V^*) \subseteq \ker \phi \]
of vector spaces. The reverse inclusion follows from counting dimensions and the fact that \(\phi \) is surjective: We have that
\[
\dim_F \ker \phi = \dim_F S^n(V^*) - \dim_F S^{n-k}(V^*) \otimes S^k(V^*)
\]
\[
eq \sum_{i=0}^{n} \binom{i+N-1}{N-1} - \sum_{i=0}^{k} \binom{i+N-1}{N-1} = \sum_{i=k+1}^{n} \binom{i+N-1}{N-1},
\]
and we see that \(\dim_F \ker \phi = \dim_F m^{k+1} S^{n-(k+1)}(V^*) \). It follows that
\[
m^{k+1} S^{n-(k+1)}(V^*) = \ker \phi;
\]
hence we have an exact sequence of \(P \)-representations
\[
0 \to m^{k+1} S^{n-(k+1)}(V^*) \to S^n(V*) \to S^{n-k}(L^*) \otimes S^k(V^*) \to 0.
\]
Using sequence (2.2.1) we get isomorphisms
\[
P^k(\mathcal{O}(n))(\pi) \cong H^0(X, \mathcal{O}(n))/H^0(X, \mathcal{O}(n) \otimes m^{k+1})
\cong S^n(V^*)/m^{k+1} S^{n-(k+1)}(V^*) \cong S^{n-k}(V^*) \otimes S^k(V^*),
\]
and it follows that \(P^k(\mathcal{O}(n))(\pi) \) is isomorphic to \(S^{n-k}(L^*) \otimes S^k(V^*) \) as a representation. \(\square \)

Note that the result in Theorem 2.4 is true if \(\text{char}(F) > n \).

Corollary 2.5. For all \(1 \leq k < n \), \(P^k(\mathcal{O}(n)) \) splits as an abstract vector bundle as \(\bigoplus_{N}^{N+k} \mathcal{O}(n-k) \).

Proof. Since \(S^k(V^*) \) corresponds to the trivial rank \((n,k) \) abstract vector bundle on \(P(V^*) \), and \(S^{n-k}(L^*) \) corresponds to the line bundle \(\mathcal{O}(n-k) \), the assertion is proved. \(\square \)

We see that we recover results on the splitting type of the principal parts obtained in [6], [7], [8] and [9].

Acknowledgments

I would like to thank Michel Brion for an invitation to spend spring 2001 at the Institut Fourier. Thanks for suggesting the problem, sharing ideas and for answering numerous questions on homogeneous spaces and representation theory. Thanks also to Laurent Manivel for stimulating discussions on the subject. I would also like to thank Mina Teicher for an invitation to the Bar-Ilan University, where parts of this work were done and this note was written. Finally, thanks to Dan Laksov for comments.

References

Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
E-mail address: makes@macs.biu.ac.il
Current address: Department of Mathematics, KTH, 10044 Stockholm, Sweden