On lifting properties for confluent mappings
HTML articles powered by AMS MathViewer
- by Janusz J. Charatonik and Janusz R. Prajs
- Proc. Amer. Math. Soc. 133 (2005), 577-585
- DOI: https://doi.org/10.1090/S0002-9939-04-07537-9
- Published electronically: August 25, 2004
- PDF | Request permission
Abstract:
Known results about lifting of paths for covering, light open and light confluent mappings are in some sense extended for all confluent mappings with the domain being a continuum having the arc property of Kelley. As an application we prove that each confluently tree-like continuum has the fixed point property.References
- R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959), 171–192. MR 100823, DOI 10.1090/S0002-9947-1959-0100823-3
- Janusz J. Charatonik, Włodzimierz J. Charatonik, and PawełKrupski, Dendrites and light open mappings, Proc. Amer. Math. Soc. 128 (2000), no. 6, 1839–1843. MR 1751997, DOI 10.1090/S0002-9939-00-05693-8
- J. J. Charatonik, W. J. Charatonik and J. R. Prajs, Hereditarily unicoherent continua and their absolute retracts, Rocky Mountain J. Math. 34 (2004), no. 1, 83–110.
- J. J. Charatonik, W. J. Charatonik and J. R. Prajs, Arc property of Kelley and absolute retracts for hereditarily unicoherent continua. Colloq. Math. 97 (2003), no. 1, 49–65.
- J. J. Charatonik, W. J. Charatonik and J. R. Prajs, Confluent mappings and the arc property of Kelley, preprint.
- J. J. Charatonik and P. Krupski, Dendrites and light mappings, Proc. Amer. Math. Soc. 132 (2004), 1211–1217.
- J. J. Charatonik and J. R. Prajs, AANR spaces and absolute retracts for tree-like continua, Czechosl. Math. J. (to appear).
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- A. Granas, Fixed point theorems for the approximative $\textrm {ANR}$-s, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1967), 15–19 (English, with Russian summary). MR 227917
- Charles L. Hagopian, Fixed-point problems in continuum theory, Continuum theory and dynamical systems (Arcata, CA, 1989) Contemp. Math., vol. 117, Amer. Math. Soc., Providence, RI, 1991, pp. 79–86. MR 1112805, DOI 10.1090/conm/117/1112805
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Józef Krasinkiewicz, Path-lifting property for 0-dimensional confluent mappings, Bull. Polish Acad. Sci. Math. 48 (2000), no. 4, 357–367. MR 1797901
- T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979), 95. MR 522934
- Tadeusz Maćkowiak, Retracts of hereditarily unicoherent continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 3-4, 177–183 (1981) (English, with Russian summary). MR 620356
- T. Maćkowiak and E. D. Tymchatyn, Some classes of locally connected continua, Colloq. Math. 52 (1987), no. 1, 39–52. MR 891496, DOI 10.4064/cm-52-1-39-52
- J. Mioduszewski, On continuous selections of multi-valued functions on dendrites, Prace Mat. 5 (1961), 73–77 (Polish, with Russian and English summaries). MR 0130674
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- Janusz R. Prajs, Continuous decompositions of Peano plane continua into pseudo-arcs, Fund. Math. 158 (1998), no. 1, 23–40. MR 1641220
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4, DOI 10.1080/00029890.1939.11998880
Bibliographic Information
- Janusz J. Charatonik
- Affiliation: Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F., México – \text{and} – Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50384, Wrocław, Poland
- Email: jjc@math.unam.mx
- Janusz R. Prajs
- Affiliation: Department of Mathematics and Statistics, California State University Sacramento, Sacramento, California 95819-6051 – \text{and} – Institute of Mathematics, University of Opole, ul. Oleska 48, 45-052 Opole, Poland
- Email: prajs@csus.edu
- Received by editor(s): July 9, 2001
- Received by editor(s) in revised form: January 15, 2003
- Published electronically: August 25, 2004
- Communicated by: Alan Dow
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 577-585
- MSC (2000): Primary 54C25, 54E40, 54F15, 54F50
- DOI: https://doi.org/10.1090/S0002-9939-04-07537-9
- MathSciNet review: 2093082