A NOTE ON MEROMORPHIC OPERATORS

CHRISTOPH SCHMOEGER

(Communicated by Joseph A. Ball)

Abstract. Let X be a complex Banach space and T a bounded linear operator on X. T is called meromorphic if the spectrum $\sigma(T)$ of T is a countable set, with 0 the only possible point of accumulation, such that all the nonzero points of $\sigma(T)$ are poles of $(\lambda I - T)^{-1}$. By means of the analytical core $K(T)$ we give a spectral theory of meromorphic operators. Our results are a generalization of some results obtained by Gong and Wang (2003).

1. Introduction and terminology

Throughout this paper, X will denote an infinite-dimensional complex Banach space. By $\mathcal{L}(X)$ we denote the Banach algebra of all bounded linear operators on X. Let $T \in \mathcal{L}(X)$. The kernel and the range of T will be denoted by $N(T)$ and $T(X)$, respectively. The spectrum, the set of eigenvalues, and the resolvent set of T are denoted by $\sigma(T)$, $\sigma_p(T)$ and $\rho(T)$, respectively. For the resolvent $(\lambda I - T)^{-1}$ we write $R_\lambda(T)$ ($\lambda \in \rho(T)$).

The nullity $\alpha(T)$ of T is the dimension of $N(T)$. The defect $\beta(T)$ of T is the codimension of $T(X)$. The ascent $p(T)$ and the descent $q(T)$ are the extended integers given by

$$p(T) = \inf\{n \geq 0 : N(T^n) = N(T^{n+1})\},$$

$$q(T) = \inf\{n \geq 0 : T^n(X) = T^{n+1}(X)\}.$$

The infimum over the empty set is taken to be ∞. It follows from Satz 72.3 that if $p(T)$ and $q(T)$ are both finite, then they are equal. If λ_0 is an isolated point in $\sigma(T)$, the spectral projection corresponding to λ_0 will denoted by P_{λ_0}. We have $X = P_{\lambda_0}(X) \oplus N(P_{\lambda_0})$. From Satz 101.2 we have the following characterization of the poles of $R_\lambda(T)$:

Theorem 1. The complex number λ_0 is a pole of $R_\lambda(T)$ if and only if $0 < p(\lambda_0 I - T) = q(\lambda_0 I - T) < \infty$. In this case we have

$$P_{\lambda_0}(X) = N((\lambda_0 I - T)^p) \text{ and } N(P_{\lambda_0}) = (\lambda_0 I - T)^p(X),$$

where $p = p(\lambda_0 I - T)$ is the order of the pole λ_0, and $\lambda_0 \in \sigma_p(T)$.

Received by the editors August 15, 2003 and, in revised form, October 20, 2003.

2000 Mathematics Subject Classification. Primary 47A10, 47A11.

Key words and phrases. Meromorphic operators, analytical core.
We now list various classes of operators, which will be discussed in this note:

\[
\mathcal{F}(X) = \{ T \in \mathcal{L}(X) : \dim T(X) < \infty \};
\]

\[
\mathcal{K}(X) = \{ T \in \mathcal{L}(X) : T \text{ is compact} \};
\]

\[
\Phi(X) = \{ T \in \mathcal{L}(X) : \alpha(T) < \infty, \beta(T) < \infty \}.
\]

Operators in \(\Phi(X) \) are called \textit{Fredholm operators}.

Let \(T \in \mathcal{L}(X) \) and \(\lambda \in \mathbb{C} \). \(\lambda \) is called a \textit{Riesz point} of \(T \) if

\[
\alpha(\lambda I - T) = \beta(\lambda I - T) < \infty \quad \text{and} \quad p(\lambda I - T) = q(\lambda I - T) < \infty.
\]

\(T \in \mathcal{L}(X) \) is called a \textit{Riesz operator} if each \(\lambda \neq 0 \) is a Riesz point of \(T \). We denote by \(\mathcal{R}(X) \) the class of all Riesz operators in \(\mathcal{L}(X) \).

We have the following characterization of Riesz operators (see [4, §105]):

Theorem 2. Let \(T \in \mathcal{L}(X) \). Then:

\(T \in \mathcal{R}(X) \iff \) each \(\lambda_0 \in \sigma(T) \setminus \{0\} \) is an isolated point of \(\sigma(T) \) and \(P_{\lambda_0} \in \mathcal{F}(X) \).

The class \(\mathcal{M}(X) \) of \textit{meromorphic operators} is defined as follows:

\[
\mathcal{M}(X) = \{ T \in \mathcal{L}(X) : \text{ each } \lambda_0 \in \sigma(T) \setminus \{0\} \text{ is a pole of } R_{\lambda_0}(T) \}.
\]

We have the following inclusions:

\[
\mathcal{F}(X) \subseteq \mathcal{K}(X) \subseteq \mathcal{R}(X) \subseteq \mathcal{M}(X).
\]

Two subclasses of \(\mathcal{M}(X) \) are also considered in this note:

\[
\mathcal{Q}(X) = \{ T \in \mathcal{L}(X) : \sigma(T) = \{0\} \}
\]

and

\[
\mathcal{M}_0(X) = \{ T \in \mathcal{M}(X) : \sigma(T) \text{ is finite} \}.
\]

An operator in \(\mathcal{Q}(X) \) is called \textit{quasinilpotent}.

In [5] Mbekhta introduced two important subspaces for \(T \in \mathcal{L}(X) \): the \textit{analytical core} \(K(T) \) of \(T \) is defined by

\[
K(T) = \{ x \in X : \text{ there exist } c > 0 \text{ and a sequence } (x_n)_{n \geq 1} \text{ in } X \text{ such that } Tx_n = x, \quad Tx_{n+1} = x_n \quad \text{and} \quad ||x_n|| \leq c^n ||x|| \text{ for all } n \in \mathbb{N} \}.
\]

Observe that if \(Y \) is a closed subspace of \(X \) such that \(T(Y) = Y \), then \(Y \subseteq K(T) \) ([8, Proposition 2]).

The subspace \(H_0(T) \), defined by

\[
H_0(T) = \{ x \in X : \lim_{n \to \infty} ||T^nx||^{1/n} = 0 \},
\]

is called the \textit{quasinilpotent part} of \(T \).

We close the section with the following definition: an operator \(T \in \mathcal{L}(X) \) is said to have the \textit{single-valued extension property} (SVEP) in \(\lambda_0 \in \mathbb{C} \) if for any holomorphic function \(f : U \to X \), where \(U \) is a neighbourhood of \(\lambda_0 \), with \((\lambda I - T)f(\lambda) \equiv 0 \) for all \(\lambda \in U \), the result is \(f(\lambda) \equiv 0 \). We say that \(T \) has the SVEP if \(T \) has the SVEP in each \(\lambda \in \mathbb{C} \).

It is clear that each \(T \in \mathcal{M}(X) \) has the SVEP. Furthermore, we have \(\sigma(T) \setminus \{0\} \subseteq \sigma_p(T) \) if \(T \in \mathcal{M}(X) \) (see Theorem 1).
2. Preliminary results

In this section we collect some results which we need in the sequel.

Proposition 1. Let $T, S \in \mathcal{L}(X)$.
\begin{enumerate}

 \item $T(K(T)) = K(T)$ and $T(H_0(T)) \subseteq H_0(T)$.
 \item $K(T) \subseteq T^n(X)$ and $N(T^n) \subseteq H_0(T)$ for all $n \in \mathbb{N}$.
 \item $N(\lambda I - T) \subseteq K(T)$ for all $\lambda \in \mathbb{C}\setminus\{0\}$.
 \item $H_0(T) \subseteq (\lambda I - T)(X)$ for all $\lambda \in \mathbb{C}\setminus\{0\}$.
 \item If $TS = ST$, then $H_0(T) \subseteq H_0(TS)$.
 \item $0 \in \rho(T) \iff K(T) = X$ and $H_0(T) = \{0\}$.
\end{enumerate}

Proof. (1) is shown in [6];
(2) is clear;
(3) if $x \in N(\lambda I - T)$, put $c = |\lambda|^{-1}$ and $x_n = |\lambda|^{-n}x$ if $n \in \mathbb{N}$;
(4) is shown in [8] Proposition 1;
(5) is clear;
(6) follows from (2) and (5). \qed

Proposition 2. Let $T \in \mathcal{L}(X)$, $\lambda_0 \in \sigma(T)$ and $K(\lambda_0 I - T) = \{0\}$. Then λ_0 is the only possible isolated point in $\sigma(T)$.

Proof. Corollary 1.3 in [7]. \qed

Proposition 3. Suppose that $T \in \mathcal{L}(X)$ has the SVEP in $\lambda_0 = 0$.
\begin{enumerate}
 \item If $q(T) < \infty$, then $p(T) = q(T)$.
 \item 0 is a pole of $R_\lambda(T)$ if and only if $0 < q(T) < \infty$.
\end{enumerate}

Proof. (1) is shown in [8] Proposition 3.
(2) If 0 is a pole of $R_\lambda(T)$, then $0 < q(T) < \infty$ by Theorem 2. If $0 < q(T) < \infty$,

it follows from (1) that $0 < p(T) = q(T) < \infty$: Theorem 2 shows now that 0 is a pole of $R_\lambda(T)$. \qed

Proposition 4. Let $T \in \mathcal{L}(X)$. 0 is an isolated point of $\sigma(T)$ if and only if $K(T)$ is closed, $X = K(T) + H_0(T)$ and $K(T) \cap H_0(T) = \{0\}$. In this case,

\[P_0(X) = H_0(T) \text{ and } N(P_0) = K(T). \]

Proof. Proposition 4 and Theorem 4 in [8]. \qed

Notation. If $T \in \mathcal{L}(X)$ and if Y is a T-invariant subspace of X, then $T|_Y$ means the restriction of T to Y.

Proposition 5. Let $T \in \mathcal{L}(X)$ and $\lambda_0 \in \mathbb{C}\setminus\{0\}$. If λ_0 is an isolated point of $\sigma(T)$, then

\[H_0(\lambda_0 I - T) \text{ is a closed } T\text{-invariant subspace and } \sigma(T|_{H_0(\lambda_0 I - T)}) = \{\lambda_0\}. \]

Proof. By Proposition 1(1) and Proposition 4, $T(H_0(\lambda_0 I - T)) \subseteq H_0(\lambda_0 I - T)$ and $H_0(\lambda_0 I - T) = P_{\lambda_0}(X)$, thus $H_0(\lambda_0 I - T)$ is closed and T-invariant. From [4] Satz 100.1 we get $\sigma(T|_{H_0(\lambda_0 I - T)}) = \{\lambda_0\}$. \qed

The next result generalizes Proposition 2.4 in [7].
Proposition 6. Suppose that $T \in \mathcal{L}(X)$ has the SVEP, $\lambda_0 \in \mathbb{C}\setminus\{0\}$, $\lambda_0 \in \rho(T)$ or λ_0 is an isolated point of $\sigma(T)$ and that

$$H_0(\lambda_0 I - T) + H_0(T) = X.$$

Then $0 \in \rho(T)$ or 0 is an isolated point of $\sigma(T)$.

Proof. Put $Y = H_0(\lambda_0 I - T)$. If $\lambda_0 \in \rho(T)$, then $Y = \{0\}$ (by Proposition 1(6)); thus,

$$(\lambda I - T)(Y) = Y \quad \text{for all } \lambda \in \mathbb{C}.\$$

If $\lambda_0 \in \sigma(T)$, then, by Proposition 5, there exists $\rho > 0$ such that

$$(\lambda I - T)(Y) = Y \quad \text{for } |\lambda| < \rho.$$

Therefore we have in both cases that there is some $\rho > 0$ with $(\lambda I - T)(Y) = X$ for $|\lambda| < \rho$.

Now take $\lambda \in \mathbb{C}$ with $0 < |\lambda| < \rho$. Then

$$H_0(\lambda I - T) = Y \subseteq (\lambda I - T)(X),$$

thus $X = H_0(\lambda_0 I - T) + H_0(T) \subseteq (\lambda I - T)(X) + H_0(T)$.

Since $H_0(T) \subseteq (\lambda I - T)(X)$ (by Proposition 1(4)),

$$X = (\lambda I - T)(X),$$

therefore $q(\lambda I - T) = 0$ for $0 < |\lambda| < \rho$. Since T has the SVEP, we get from Proposition 3(1) that $p(\lambda I - T) = q(\lambda I - T) = 0$ for $0 < |\lambda| < \rho$. Hence $\{\lambda \in \mathbb{C} : 0 < |\lambda| < \rho\} \subseteq \rho(T)$.

Corollary 1. Suppose that $T \in \mathcal{L}(X)$ has the SVEP, $\lambda_0 \in \mathbb{C}\setminus\{0\}$, $\lambda_0 \in \rho(T)$ or λ_0 is an isolated point of $\sigma(T)$ and that

$$H_0(T) = K(\lambda_0 I - T).$$

Then $0 \in \rho(T)$ or 0 is an isolated point of $\sigma(T)$.

Proof. If $\lambda_0 \in \rho(T)$, then $K(\lambda_0 I - T) = X$ and $H_0(\lambda_0 I - T) = \{0\}$ (Proposition 1(6)). Thus

$$X = K(\lambda_0 I - T) + H(\lambda_0 I - T),$$

hence

$$X = H_0(T) + H_0(\lambda_0 I - T).$$

If $\lambda_0 \in \sigma(T)$, then, by Proposition 4,

$$X = K(\lambda_0 I - T) + H(\lambda_0 I - T),$$

therefore

$$X = H_0(T) + H_0(\lambda_0 I - T).$$

Thus we have in both cases that $X = H_0(T) + H_0(\lambda_0 I - T)$. Now use Proposition 6.

Remark. Corollary 1 generalizes [7, Corollary 2.5].
3. Meromorphic operators

In this section we present the main results of this paper. The first result deals with Riesz operators and generalizes Theorem 2.6 in [7].

Theorem 3. Let $T \in \mathcal{R}(X)$. The following assertions are equivalent:

1. 0 is a pole of $R_\lambda(T)$;
2. there exists $q \in \mathbb{N}$ such that $T^q \in \mathcal{F}(X)$;
3. there exists $n \in \mathbb{N}$ with $K(T) = T^n(X)$;
4. $q(T) < \infty$.

Proof. $(1) \Leftrightarrow (2)$: [Aufgabe 105.2].

$(2) \Rightarrow (3)$: Since $T^{q+k}(X) \subseteq T^q(X)$ for $k \geq 0$ and $\dim T^q(X) < \infty$, we get $q \leq q(T) < \infty$. Put $n = q(T)$. Then $\dim T^n(X) < \infty$, hence $T^n(X)$ is closed. Furthermore $T(T^n(X)) = T^{n+1}(X) = T^n(X)$. Proposition 2 in [8] implies now that $T^n(X) \subseteq K(T)$. Therefore $K(T) = T^n(X)$, by Proposition 1(2).

$(3) \Rightarrow (4)$: From $T^{n+1}(X) = T(T^n(X)) = T(K(T))$ and $T(K(T)) = K(T)$ (Proposition 1(1)) we derive $T^{n+1}(X) = T^n(X)$, thus $q(T) \leq n < \infty$.

$(4) \Rightarrow (1)$: Since T has the SVEP, it follows from Proposition 3(2) that 0 is a pole of $R_\lambda(T)$.

Remark. The above proof shows that if $T \in \mathcal{L}(X)$ has the SVEP in $\lambda_0 = 0$ and if $0 \in \sigma(T)$, then the assertions (1), (3) and (4) in Theorem 3 are equivalent (for the implication $(1) \Rightarrow (3)$ use Theorem 1 and Proposition 4).

Our next result generalizes Theorem 2.1 in [7].

Theorem 4. Let $T \in \mathcal{M}(X)$. Then:

$0 \in \rho(T)$ or 0 is an isolated point of $\sigma(T) \Leftrightarrow K(T)$ is closed.

Proof. \Rightarrow: Proposition 1(6) and Proposition 4 show that $K(T)$ is closed if $0 \in \rho(T)$ or 0 is an isolated point of $\sigma(T)$.

\Leftarrow: Case 1: $K(T) = \{0\}$. Proposition 1(6) shows that $0 \in \sigma(T)$. Proposition 2 implies then that 0 is the only possible isolated point of $\sigma(T)$. Since $T \in \mathcal{M}(X)$ we get $\sigma(T) = \{0\}$ (hence $T \in \mathcal{Q}(X)$).

Case 2: $K(T) \neq \{0\}$. Since $K(T)$ is closed, $K(T)$ is a Banach space. Put $T_0 := T|_{K(T)}$ and $I_0 = I|_{K(T)}$. Use Proposition 1(1) to get $T_0 \in \mathcal{L}(K(T))$ and $q(T_0) = 0$.

Since T has the SVEP, T_0 has the SVEP.

From Proposition 3(1) we therefore derive $\rho(T_0) = q(T_0) = 0$, hence $0 \in \rho(T_0)$. Thus there is $\rho > 0$ such that $\{\lambda \in \mathbb{C} : |\lambda| < \rho\} \subseteq \rho(T_0)$. Now take $\lambda \in \mathbb{C}$ with $0 < |\lambda| < \rho$. Then $N(\lambda I - T) \subseteq K(T)$ (Proposition 1(3)), thus $N(\lambda I - T) = N(\lambda I_0 - T_0) = \{0\}$, hence $\lambda \notin \sigma_p(T)$. Since $\lambda \neq 0$ and $T \in \mathcal{M}(X)$, $\lambda \notin \sigma(T)$. Therefore $\lambda \in \mathbb{C} : 0 < |\lambda| < \rho \subseteq \rho(T)$.

We proceed with a corollary that generalizes Corollary 2.2 in [7].

Corollary 2. Let $T \in \mathcal{M}(X)$. Then:

1. $K(T) = \{0\} \Leftrightarrow T \in \mathcal{Q}(X)$;
2. $K(T)$ is closed and $K(T) \neq \{0\} \Leftrightarrow T \in \mathcal{M}_0(X) \setminus \mathcal{Q}(X)$;
3. $K(T)$ is not closed $\Leftrightarrow T \notin \mathcal{M}_0(X)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. (1) We have seen in the proof of Theorem 4 that \(K(T) = \{0\} \) implies \(T \in Q(X) \).

Now let \(T \in Q(X) \). Remarque 1.1 in [3] shows that \(H_0(T) = X \). Since \(H_0(T) \cap K(T) = \{0\} \), by Proposition 4, we derive \(K(T) = \{0\} \).

(2) “\(\Rightarrow \)” : (1) gives \(T \notin Q(X) \). Theorem 4 shows that \(0 \in \rho(T) \) or \(0 \) is an isolated point of \(\sigma(T) \). Therefore, since \(T \in M(X) \), \(\sigma(T) \) is finite, hence \(T \in M_0(X) \).

“\(\Leftarrow \)” : From (1) we get \(K(T) \neq \{0\} \). Since \(\sigma(T) \) is finite, we see that \(0 \in \rho(T) \) or \(0 \) is an isolated point of \(\sigma(T) \). Theorem 4 implies then that \(K(T) \) is closed.

(3) “\(\Rightarrow \)” : By Theorem 4, \(0 \in \sigma(T) \) and \(0 \) is not an isolated point of \(\sigma(T) \), thus \(T \notin M_0(X) \).

“\(\Leftarrow \)” : Since \(T \in M(X) \setminus M_0(X) \), \(0 \) is a point of accumulation of \(\sigma(T) \), thus \(K(T) \) is not closed by Theorem 4. \(\square \)

We denote by \(X^* \) the dual space of \(X \) and by \(T^* \) the adjoint of \(T \in L(X) \).

Proposition 7. Let \(T \in L(X) \), and suppose that \(T \) and \(T^* \) have the SVEP in 0. Then:

\[
T \in \Phi(X) \iff 0 \text{ is a Riesz point of } T.
\]

Proof. The implication “\(\Leftarrow \)” follows from the definition of a Riesz point.

Now suppose that \(T \in \Phi(X) \). Since \(T \) has the SVEP in 0, it follows from [3] Theorem 15 that \(p(T) < \infty \). Satz 82.1 in [4] gives \(T^* \in \Phi(X^*) \). Since \(T^* \) has the SVEP in 0, we have \(q(T^*) < \infty \) by [3] Corollary 16. Hence \(p(T) = q(T) < \infty \). Satz 72.5 in [4] implies now that \(\alpha(T) = \beta(T) \). \(\square \)

Corollary 3. For \(T \in M(X) \) the following assertions are equivalent:

1. \(K(T) \) is closed and \(\text{codim} K(T) < \infty \);
2. \(K(T) \) is closed and \(\dim H_0(T) < \infty \);
3. \(0 \) is a Riesz point of \(T \);
4. \(T \in \Phi(X) \).

Proof. Since \(T \in M(X) \) and \(\sigma(T^*) = \sigma(T) \), \(T \) and \(T^* \) have the SVEP. Proposition 7 shows then that (3) and (4) are equivalent.

Now suppose that \(K(T) \) is closed. By Theorem 4, \(0 \in \rho(T) \) or \(0 \) is an isolated point of \(\sigma(T) \). Now use Proposition 1(6) and Proposition 4 to derive

\[X = K(T) + H_0(T) \text{ and } K(T) \cap H_0(T) = \{0\}. \]

Hence \(\dim H_0(T) = \text{codim} K(T) \). Therefore (1) and (2) are equivalent.

Now we show that (2) implies (3): By Theorem 4, \(0 \in \rho(T) \) or \(0 \) is an isolated point of \(\sigma(T) \). If \(0 \notin \sigma(T) \), then \(0 \) is a Riesz point of \(T \). Hence suppose that \(0 \in \sigma(T) \). By Proposition 4, \(P_0(X) = H_0(T) \), thus \(P_0 \in \mathcal{F}(X) \). [4] Satz 105.2 shows now that \(0 \) is a Riesz point of \(T \).

It remains to show that (3) implies (2):

Case 1: \(0 \in \rho(T) \). By Proposition 1(6), \(K(T) = X \) and \(H_0(T) = \{0\} \). Hence \(K(T) \) is closed and \(\dim H_0(T) < \infty \).

Case 2: \(0 \in \sigma(T) \). Since \(0 \) is a Riesz point of \(T \), \(0 \) is an isolated point of \(\sigma(T) \) and \(P_0 \in \mathcal{F}(X) \), by Satz 105.2 in [4]. From Proposition 4 and Theorem 4 it follows that \(\dim H_0(T) = \dim P_0(X) < \infty \) and that \(K(T) \) is closed. \(\square \)

Corollary 4. For \(T \in M(X) \) the following assertions are equivalent:

1. \(\dim K(T) < \infty \);
2. \(T \in R(X) \cap M_0(X) \).
Proof. (1) ⇒ (2): Since \(\dim X = \infty \) and \(\dim K(T) < \infty \), it follows from Proposition 1(6) that \(0 \in \sigma(T) \). Corollary 2 shows that \(T \in \mathcal{M}_0(X) \).

Now take \(\lambda \in \mathbb{C} \setminus \{0\} \). Since \(T \in \mathcal{M}(X) \), \(\lambda \in \rho(T) \) or \(\lambda \) is a pole of \(R_\lambda(T) \), thus \(m(\lambda I - T) = q(\lambda I - T) < \infty \). By Proposition 1(3), \(N(\lambda I - T) \subseteq K(T) \), thus \(\alpha(\lambda I - T) < \infty \). Satz 72.5 in [4] implies now that
\[
\beta(\lambda I - T) = \alpha(\lambda I - T) < \infty.
\]
Therefore \(\lambda \) is a Riesz point of \(T \). Since \(\lambda \in \mathbb{C} \setminus \{0\} \) was arbitrary, \(T \in \mathcal{R}(X) \).

(2) ⇒ (1): We can assume that \(K(T) \neq \{0\} \). Since \(T \in \mathcal{M}_0(X) \) and \(0 \in \sigma(T) \) (see [4] Aufgabe 105.2]), \(0 \) is an isolated point of \(\sigma(T) \). Hence \(K(T) \) is closed (Theorem 4). Put \(T_0 = T|_{K(T)} \). By Proposition 1(1), \(T(K(T)) = K(T) \), thus \(T_0 \in \mathcal{L}(K(T)) \). From Proposition 4 we get \(K(T) = N(P_0) \). Now use Satz 100.1 in [4] to derive
\[
\sigma(T_0) = \sigma(T) \setminus \{0\},
\]
thus \(0 \notin \sigma(T_0) \). Since \(T \in \mathcal{R}(X) \) it follows from [4] Satz 105.6] that \(T_0 \in \mathcal{R}(K(T)) \).

Now assume that \(\dim K(T) = \infty \). Thus, by [4] Aufgabe 105.2] \(0 \notin \sigma(T_0) \), a contradiction. Hence \(\dim K(T) < \infty \).

4. Final remarks

1. The proof of Theorem 4 shows that the following result is valid.

Theorem 5. Suppose that \(T \in \mathcal{L}(X) \) has the SVEP in \(0 \) and that there is a sequence \((\lambda_n) \) in \(\sigma_p(T) \) with \(\lambda_n \neq 0 \) for all \(n \in \mathbb{N} \) and \(\lambda_n \to 0 \) as \(n \to \infty \). Then \(K(T) \) is not closed.

That the condition “\(T \) has the SVEP in \(0 \)” cannot be dropped in Theorem 5 shows the example of the unilateral left shift on \(l^2(\mathbb{N}) \):

Example. Let \(X = l^2(\mathbb{N}) \), and define the operator \(T \in \mathcal{L}(X) \) by
\[
T(\xi_1, \xi_2, \xi_3, \ldots) = (\xi_2, \xi_3, \ldots).
\]

It is well known that \(\sigma_p(T) = \{ \lambda \in \mathbb{C} : |\lambda| < 1 \} \). Since \(T(X) = X \), we have \(K(T) = X \), by [3] Proposition 2]. Thus \(K(T) \) is closed. Example 1.7 in [2] shows that \(T \) does not have the SVEP in 0.

2. In [1] W. Bouamama proves independently some of the results of our paper.

References

Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany
E-mail address: christoph.schmoeger@math.uni-karlsruhe.de