An improved Mordell type bound for exponential sums
HTML articles powered by AMS MathViewer
- by Todd Cochrane and Christopher Pinner
- Proc. Amer. Math. Soc. 133 (2005), 313-320
- DOI: https://doi.org/10.1090/S0002-9939-04-07726-3
- Published electronically: September 2, 2004
- PDF | Request permission
Abstract:
For a sparse polynomial $f(x)=\sum _{i=1}^r a_ix^{k_i}\in \mathbb Z [x]$, with $p\nmid a_i$ and $1\leq k_1<\cdots <k_r<p-1$, we show that \[ \left |\sum _{x=1}^{p-1} e^{2\pi i f(x)/p} \right | \leq 2^{\frac {2}{r}} (k_1\cdots k_r)^{\frac {1}{r^2}}p^{1-\frac {1}{2r}}, \] thus improving upon a bound of Mordell. Analogous results are obtained for Laurent polynomials and for mixed exponential sums.References
- N. M. Akuliničev, Bounds for rational trigonometric sums of a special type, Dokl. Akad. Nauk SSSR 161 (1965), 743–745 (Russian). MR 0177956
- Francis N. Castro and Carlos J. Moreno, Mixed exponential sums over finite fields, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2529–2537. MR 1690978, DOI 10.1090/S0002-9939-00-05441-1
- Todd Cochrane and Christopher Pinner, Stepanov’s method applied to binomial exponential sums, Q. J. Math. 54 (2003), no. 3, 243–255. MR 2013138, DOI 10.1093/qjmath/54.3.243
- Todd Cochrane, Christopher Pinner, and Jason Rosenhouse, Bounds on exponential sums and the polynomial Waring problem mod $p$, J. London Math. Soc. (2) 67 (2003), no. 2, 319–336. MR 1956138, DOI 10.1112/S0024610702004040
- H. Davenport, On certain exponential sums, Journal für Math., 169 (1933), 158-176.
- D. R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from $k\textrm {th}$ powers, and for Heilbronn’s exponential sum, Q. J. Math. 51 (2000), no. 2, 221–235. MR 1765792, DOI 10.1093/qjmath/51.2.221
- A. A. Karatsuba, On estimates of complete trigonometric sums, Matem. Zametki. 1 (1967), 199-208 (Russian); translation in Math. Notes (1968), 133-139.
- Sergei V. Konyagin and Igor E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Tracts in Mathematics, vol. 136, Cambridge University Press, Cambridge, 1999. MR 1725241, DOI 10.1017/CBO9780511542930
- L. J. Mordell, On a sum analogous to a Gauss’s sum, Quart. J. Math. 3 (1932), 161-167.
- G. I. Perel′muter, Estimate of a sum along an algebraic curve, Mat. Zametki 5 (1969), 373–380 (Russian). MR 241424
- Igor E. Shparlinski, Computational and algorithmic problems in finite fields, Mathematics and its Applications (Soviet Series), vol. 88, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1249064, DOI 10.1007/978-94-011-1806-4
- André Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207. MR 27006, DOI 10.1073/pnas.34.5.204
- Trevor D. Wooley, A note on simultaneous congruences, J. Number Theory 58 (1996), no. 2, 288–297. MR 1393617, DOI 10.1006/jnth.1996.0078
- Hong Bing Yu, Estimates for complete exponential sums of special types, Math. Proc. Cambridge Philos. Soc. 131 (2001), no. 2, 321–326. MR 1857123, DOI 10.1017/S030500410100528X
Bibliographic Information
- Todd Cochrane
- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
- MR Author ID: 227122
- Email: cochrane@math.ksu.edu
- Christopher Pinner
- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
- MR Author ID: 319822
- Email: pinner@math.ksu.edu
- Received by editor(s): July 23, 2002
- Received by editor(s) in revised form: September 6, 2002
- Published electronically: September 2, 2004
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 313-320
- MSC (2000): Primary 11L07, 11L03
- DOI: https://doi.org/10.1090/S0002-9939-04-07726-3
- MathSciNet review: 2093050