ON THE ALGEBRA OF FUNCTIONS C^k-EXTENDABLE FOR EACH k FINITE

WIESLAW PAWLUCKI

(Communicated by David Preiss)

Abstract. For each positive integer l we construct a C^l-function of one real variable, the graph of which has the following property: there exists a real function on \mathbb{R} which is C^k-extendable to \mathbb{R}^2 for each k finite, but it is not C^∞-extendable.

Introduction

Let X be a locally closed subset of \mathbb{R}^n, i.e. closed in an open subset G of \mathbb{R}^n. Consider the following \mathbb{R}-algebras of functions:

$$C^k(X) = \{ f : X \to \mathbb{R} | \exists \tilde{f} : G \to \mathbb{R} \text{ of class } C^k : \tilde{f}|X = f \},$$

where $k \in \mathbb{N} \cup \{\infty\}$, and the \mathbb{R}-algebra of functions which can be called almost C^∞-functions on X:

$$C^{(\infty)}(X) = \bigcap_{k \in \mathbb{N}} C^k(X) = \lim_{k \to \infty} C^k(X).$$

Obviously, we have

$$C^\infty(X) \subset C^{(\infty)}(X) \subset C^k(X), \quad k \in \mathbb{N}.$$

A fundamental question concerning singularities of the set X is the following:

When does $C^{(\infty)}(X) = C^\infty(X)$?

The answer is affirmative in the following cases:

1) Clearly, when X is open, it means when $X = G$. More generally, if X is a closed C^∞-submanifold of G.

2) When $X = \overline{\text{int}X} \cap G$, because then $C^k(X)$ is naturally isomorphic to the algebra $\mathcal{E}^k(X)$ of C^k-Whitney fields on X ($k \in \mathbb{N} \cup \{\infty\}$) (cf. [W]), and consequently,

$$C^{(\infty)}(X) = \lim_{k \to \infty} C^k(X) = \lim_{k \to \infty} \mathcal{E}^k(X) = \mathcal{E}^\infty(X) = C^\infty(X).$$

More generally, when $X \subset M$, M is a closed C^∞-submanifold of G and X is the closure of its interior in M.

3) When $n = 1$ (cf. [M]).
4) When X is a closed semianalytic subset of G. Not all subanalytic subsets have this property, and this property distinguishes an important class of subanalytic sets (cf. \cite{BMP}).

In \cite{Pawlucki}, the author gave an example of a subset of \mathbb{R}^2 on which there are almost C^∞-functions that are not C^∞. Simplifying and clarifying the construction from \cite{Pawlucki}, here we will prove the following.

Theorem. For each positive integer l there exists a function $\varphi : \mathbb{R} \to \mathbb{R}$ of class C^l such that $C^\infty(\tilde{\varphi}) \neq C^\infty(\varphi)$, where $\varphi \subset \mathbb{R} \times \mathbb{R}$ stands for the graph of the function φ.

Proof of the Theorem.

Let $\varphi : \mathbb{R} \to \mathbb{R}$ and $(a_\nu)_\nu \subset \mathbb{R}$ be such that

(I) $a_1 > a_2 > \ldots > a_\nu > \ldots$, $a_\nu \to 0$ ($\nu \to \infty$);

(II) $\varphi : [a_\nu : \nu \in \mathbb{N}^*] \cup \{0\} : \mathbb{R} \to \mathbb{R}$ is C^∞ (\mathbb{N}^* (resp. \mathbb{N}) will denote the set of positive (resp. non-negative) integers);

(III) $\varphi(a_{\nu+1}, a_{\nu-1})$ is C^ν but not $C^{\nu+1}$ ($a_0 := +\infty$);

(IV) $\forall \nu \in \mathbb{N}$: $\lim_{x \to 0} \varphi^{(\nu)}(x)$ exists in \mathbb{R} and $\lim_{x \to 0} \varphi(x) = \varphi(0)$.

Lemma. Fix ν. If $f, g : U \to \mathbb{R}$ are $C^{\nu+1}$-functions in a neighbourhood U of $(a_\nu, \varphi(a_\nu))$ in \mathbb{R}^2 such that $f = g$ in $U \cap \tilde{\varphi}$, then

$$\frac{\partial f}{\partial y}(a_\nu, \varphi(a_\nu)) = \frac{\partial g}{\partial y}(a_\nu, \varphi(a_\nu)).$$

Proof of the Lemma. Put $\omega(x) := f(x, \varphi(x)) = g(x, \varphi(x))$, for x near a_ν. Then

$$\omega^{(\nu)}(x) = P_k(\{(\frac{\partial^j + j f}{\partial x^j \partial y})(x, \varphi(x))\}_{i+j \leq \nu+1}, \varphi(x), \ldots, \varphi^{(\nu-1)}(x)) + \varphi^{(\nu)}(x)\frac{\partial f}{\partial y}(x, \varphi(x)),$$

for x near $a_\nu, x \neq a_\nu$ and any $k \in \mathbb{N}$, where P_k is a polynomial depending only on k.

In particular,

$$\omega^{(\nu+1)}(x) = P_{\nu+1}(\{(\frac{\partial^j + j f}{\partial x^j \partial y})(x, \varphi(x))\}_{i+j \leq \nu+1}, \varphi(x), \ldots, \varphi^{(\nu)}(x)) + \varphi^{(\nu+1)}(x)\frac{\partial f}{\partial y}(x, \varphi(x)).$$

$\forall k = 0, \ldots, \nu \exists \alpha_k \in \mathbb{R}$: $\lim_{x \to -a_\nu} \varphi^{(k)}(x) = \alpha_k$ and $\lim_{x \to a_\nu} \varphi^{(\nu+1)}(x)$ does not exist in \mathbb{R}.

Two cases:

(1) There are two sequences $(b_n)_n, (c_n)_n \subset \mathbb{R}$ converging to a_ν such that

$$\lim_{n \to \infty} \varphi^{(\nu+1)}(b_n) = \beta, \quad \lim_{n \to \infty} \varphi^{(\nu+1)}(c_n) = \gamma, \beta \neq \gamma.$$

(2) There is a sequence $(b_n)_n \subset \mathbb{R}$ converging to a_ν such that

$$\lim_{n \to \infty} \varphi^{(\nu+1)}(b_n) = \pm \infty.$$

In case (1),

$$\lim_{n \to \infty} \omega^{(\nu+1)}(b_n) = P_{\nu+1}(\{(\frac{\partial^j + j f}{\partial x^j \partial y})(a_\nu, \varphi(a_\nu))\}_{i+j \leq \nu+1}, a_1, \ldots, a_\nu) + \beta \frac{\partial f}{\partial y}(a_\nu, \varphi(a_\nu)),$$

$$\lim_{n \to \infty} \omega^{(\nu+1)}(c_n) = P_{\nu+1}(\{(\frac{\partial^j + j f}{\partial x^j \partial y})(a_\nu, \varphi(a_\nu))\}_{i+j \leq \nu+1}, a_1, \ldots, a_\nu) + \gamma \frac{\partial f}{\partial y}(a_\nu, \varphi(a_\nu)).$$
Consequently,
\[\lim_{n \to \infty} \frac{\omega^{(\nu + 1)}(b_n) - \omega^{(\nu + 1)}(c_n)}{\beta - \gamma} = \frac{\partial f}{\partial y}(a_\nu, \varphi(a_\nu)) = \frac{\partial g}{\partial y}(a_\nu, \varphi(a_\nu)). \]

In case (2),
\[\omega^{(\nu + 1)}(b_n) = \text{sequence with a finite limit} + \phi^{(\nu + 1)}(b_n) \frac{\partial f}{\partial y}(b_n, \varphi(b_n)). \]

Since \(\phi^{(\nu + 1)}(b_n) \to \pm \infty \) we have
\[\lim_{n \to \infty} \frac{\omega^{(\nu + 1)}(b_n)}{\phi^{(\nu + 1)}(b_n)} = \frac{\partial f}{\partial y}(a_\nu, \varphi(a_\nu)) = \frac{\partial g}{\partial y}(a_\nu, \varphi(a_\nu)). \]

To finish the proof of the theorem first take a \(C^1 \)-function \(\lambda : \mathbb{R} \to \mathbb{R} \) such that \(\lambda^{(k)}(0) = \lim_{x \to 0} \phi^{(k)}(0) \) for each \(k \in \mathbb{N} \) (by Borel’s theorem), and then define
\[f(x, y) := \frac{y - \lambda(x)}{x}, \quad \text{for } (x, y) \in \varphi \setminus \{(0, \varphi(0))\}, \quad \text{and } f(0, \varphi(0)) := 0. \]

Fix any \(k \in \mathbb{N} \). For \((x, y) \neq (0, \varphi(0)) \), \(f(x, y) = \psi(x) \), where
\[\psi(x) := \frac{\varphi(x) - \lambda(x)}{x}, \quad \text{for } x \in \mathbb{R} \setminus \{0\}, \quad \text{and } \psi(0) := 0. \]

\(\psi \) is \(C^k \) on the set \((-\infty, a_{k-1}) \setminus \{0\} \), due to the properties (II)-(IV). On the other hand, by l’Hôpital’s rule,
\[\forall p, q \in \mathbb{N} : \lim_{x \to 0} \frac{\varphi^{(p)}(x) - \lambda^{(p)}(x)}{x^q} = 0. \]

This implies in an easy way that \(\lim_{x \to 0} \psi^{(p)}(x) = 0 \), for all \(p \in \mathbb{N} \).

Consequently, \(\psi \) is a \(C^k \)-function on \((-\infty, a_{k-1}) \), which can be treated as a \(C^k \)-function on \((-\infty, a_{k-1}) \times \mathbb{R} \) not depending on \(y \). On the other hand, \(\frac{y - \lambda(x)}{x} \) is a \(C^\infty \)-function on \((a_k, +\infty) \times \mathbb{R} \), so it suffices now to glue smoothly these two functions along the strip \((a_k, a_{k-1}) \times \mathbb{R} \).

To check that \(f \) cannot be extended to a \(C^\infty \)-function \(F : \mathbb{R}^2 \to \mathbb{R} \), suppose that such an extension \(F \) exists. Then from the Lemma
\[\frac{\partial F}{\partial y}(a_\nu, \varphi(a_\nu)) = \frac{\partial (\varphi - \lambda(x))}{\partial y}(a_\nu, \varphi(a_\nu)) = \frac{1}{a_\nu} \to +\infty, \]
but, of course,
\[\frac{\partial F}{\partial y}(a_\nu, \varphi(a_\nu)) \to \frac{\partial F}{\partial y}(0, \varphi(0)), \]
a contradiction.

Remark. It follows from [G] (the author is indebted to Rémi Soufflet for this reference) that the function \(\varphi \) in our theorem can be chosen in such a way that the germ of \(\varphi \) at 0 belongs to a Hardy field of germs of real functions at 0.
References

Instytut Matematyki, Uniwersytetu Jagiellońskiego, ul. Reymonta 4, 30-059 Kraków, Poland

E-mail address: Wieslaw.Pawlucki@im.uj.edu.pl