Bloch space in the unit ball of $\mathbb {C}^{n}$
HTML articles powered by AMS MathViewer
- by Guangbin Ren and Caifeng Tu
- Proc. Amer. Math. Soc. 133 (2005), 719-726
- DOI: https://doi.org/10.1090/S0002-9939-04-07617-8
- Published electronically: October 21, 2004
- PDF | Request permission
Abstract:
In this paper we obtain higher-dimensional versions of the Holland-Walsh characterization of the Bloch space and the Stroethoff characterization of the little Bloch space.References
- Lars V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. MR 725161
- Frank Beatrous and Jacob Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. (Rozprawy Mat.) 276 (1989), 60. MR 1010151
- Aline Bonami, Joaquim Bruna, and Sandrine Grellier, On Hardy, BMO and Lipschitz spaces of invariantly harmonic functions in the unit ball, Proc. London Math. Soc. (3) 77 (1998), no. 3, 665–696. MR 1643425, DOI 10.1112/S0024611598000598
- Jacob Burbea and Song-Ying Li, Weighted Hadamard products of holomorphic functions in the ball, Pacific J. Math. 168 (1995), no. 2, 235–270. MR 1339952
- Jun Soo Choa, Hong Oh Kim, and Yeon Yong Park, A Bergman-Carleson measure characterization of Bloch functions in the unit ball of $\textbf {C}^n$, Bull. Korean Math. Soc. 29 (1992), no. 2, 285–293. MR 1180622
- Finbarr Holland and David Walsh, Criteria for membership of Bloch space and its subspace, BMOA, Math. Ann. 273 (1986), no. 2, 317–335. MR 817885, DOI 10.1007/BF01451410
- Kyong T. Hahn and E. H. Youssfi, Möbius invariant Besov $p$-spaces and Hankel operators in the Bergman space on the ball in $\textbf {C}^n$, Complex Variables Theory Appl. 17 (1991), no. 1-2, 89–104. MR 1123807, DOI 10.1080/17476939108814499
- Miroljub Jevtić and Miroslav Pavlović, On $\scr M$-harmonic Bloch space, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1385–1392. MR 1264815, DOI 10.1090/S0002-9939-1995-1264815-0
- Maria Nowak, Bloch space and Möbius invariant Besov spaces on the unit ball of ${\Bbb C}^n$, Complex Variables Theory Appl. 44 (2001), no. 1, 1–12. MR 1826712, DOI 10.1080/17476930108815339
- Cai Heng Ouyang, Wei Sheng Yang, and Ru Han Zhao, Characterizations of Bergman spaces and Bloch space in the unit ball of $\textbf {C}^n$, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4301–4313. MR 1311908, DOI 10.1090/S0002-9947-1995-1311908-X
- Miroslav Pavlović, Decompositions of $L^p$ and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. 216 (1997), no. 2, 499–509. MR 1489593, DOI 10.1006/jmaa.1997.5675
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Ji Huai Shi, Hadamard products of functions holomorphic on a hypersphere, Chinese Ann. Math. Ser. A 9 (1988), no. 1, 49–59 (Chinese). MR 997559
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Karel Stroethoff, Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), no. 3, 405–420. MR 995138, DOI 10.1017/S0004972700003324
- Karel Stroethoff, The Bloch space and Besov spaces of analytic functions, Bull. Austral. Math. Soc. 54 (1996), no. 2, 211–219. MR 1411531, DOI 10.1017/S0004972700017676
- Richard M. Timoney, Bloch functions in several complex variables. I, Bull. London Math. Soc. 12 (1980), no. 4, 241–267. MR 576974, DOI 10.1112/blms/12.4.241
- Richard M. Timoney, Bloch functions in several complex variables. II, J. Reine Angew. Math. 319 (1980), 1–22. MR 586111, DOI 10.1515/crll.1980.319.1
Bibliographic Information
- Guangbin Ren
- Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
- Address at time of publication: Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
- Email: ren@mat.ua.pt, rengb@ustc.edu.cn
- Caifeng Tu
- Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
- Email: tucf@ustc.edu.cn
- Received by editor(s): August 16, 2001
- Received by editor(s) in revised form: January 15, 2002
- Published electronically: October 21, 2004
- Additional Notes: Project supported by the NNSF of China (No. 10001030, 10471134) and the Post-doctoral Fellowship of the University of Aveiro, UID “Matemática e Aplicações”
- Communicated by: Mei-Chi Shaw
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 719-726
- MSC (2000): Primary 32A18; Secondary 32A37
- DOI: https://doi.org/10.1090/S0002-9939-04-07617-8
- MathSciNet review: 2113920