Countably compact groups from a selective ultrafilter
HTML articles powered by AMS MathViewer
- by S. Garcia-Ferreira, A. H. Tomita and S. Watson
- Proc. Amer. Math. Soc. 133 (2005), 937-943
- DOI: https://doi.org/10.1090/S0002-9939-04-07684-1
- Published electronically: September 29, 2004
- PDF | Request permission
Abstract:
We prove that the existence of a selective ultrafilter on $\omega$ implies the existence of a countably compact group without non-trivial convergent sequences all of whose powers are countably compact. Hence, by using a selective ultrafilter on $\omega$, it is possible to construct two countably compact groups without non-trivial convergent sequences whose product is not countably compact.References
- Allen R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1969/70), 185–193. MR 251697, DOI 10.4064/fm-66-2-185-193
- W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, Band 211, Springer-Verlag, New York-Heidelberg, 1974. MR 0396267
- Eric K. van Douwen, The product of two countably compact topological groups, Trans. Amer. Math. Soc. 262 (1980), no. 2, 417–427. MR 586725, DOI 10.1090/S0002-9947-1980-0586725-8
- Salvador Garcia-Ferreira, Quasi $M$-compact spaces, Czechoslovak Math. J. 46(121) (1996), no. 1, 161–177. MR 1371698
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, Graduate Texts in Mathematics, No. 43, Springer-Verlag, New York-Heidelberg, 1976. Reprint of the 1960 edition. MR 0407579
- John Ginsburg and Victor Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), no. 2, 403–418. MR 380736
- A. Hajnal and I. Juhász, A separable normal topological group need not be Lindelöf, General Topology and Appl. 6 (1976), no. 2, 199–205. MR 431086
- Klaas Pieter Hart and Jan van Mill, A countably compact topological group $H$ such that $H\times H$ is not countably compact, Trans. Amer. Math. Soc. 323 (1991), no. 2, 811–821. MR 982236, DOI 10.1090/S0002-9947-1991-0982236-3
- Artur Hideyuki Tomita, A group under $\rm MA_{countable}$ whose square is countably compact but whose cube is not, Topology Appl. 91 (1999), no. 2, 91–104. MR 1664516, DOI 10.1016/S0166-8641(97)00206-X
- A. H. Tomita, Countable compactness and finite powers of topological groups without convergent sequences, submitted.
Bibliographic Information
- S. Garcia-Ferreira
- Affiliation: Instituto de Matemáticas (UNAM), Apartado Postal 61-3, Xangari, 58089, Morelia, Michoacán, México
- Email: sgarcia@matmor.unam.mx
- A. H. Tomita
- Affiliation: Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, CEP 05315-970, São Paulo, Brasil
- Email: tomita@ime.usp.br
- S. Watson
- Affiliation: Department of Mathematics, York University, 474700 Keele Street, M3P 1P3, Toronto, Ontario, Canada
- Email: watson@mathstat.yorku.ca
- Received by editor(s): March 3, 2003
- Received by editor(s) in revised form: November 20, 2003
- Published electronically: September 29, 2004
- Additional Notes: This research was supported by CONACYT grant no. 40057-F and DGAPA grant no. IN104601
- Communicated by: Alan Dow
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 937-943
- MSC (2000): Primary 54G20, 54D80, 22A99; Secondary 54H11
- DOI: https://doi.org/10.1090/S0002-9939-04-07684-1
- MathSciNet review: 2113947